Handbook of Toxicity of Pesticides to Wildlife
HANDBOOK OF TOXICITY OF PESTICIDES TO WILDLIFE
SECOND EDITION

By Rick H. Hudson
Richard K. Tucker
M. A. Haegele

UNIVERSITY OF CALIFORNIA PRESS
BERKELEY, CA 94720

UNITED STATES DEPARTMENT OF THE INTERIOR
FISH AND WILDLIFE SERVICE
Resource Publication 153
Washington, D.C. • 1984
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the Second Edition</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Use of Acute Toxicity Figures</td>
<td></td>
</tr>
<tr>
<td>Signs of Intoxication</td>
<td>2</td>
</tr>
<tr>
<td>Methodology</td>
<td></td>
</tr>
<tr>
<td>  Source of Animals</td>
<td>3</td>
</tr>
<tr>
<td>  Selection and Treatment of Test Animals</td>
<td>3</td>
</tr>
<tr>
<td>  Source of Chemicals</td>
<td>3</td>
</tr>
<tr>
<td>  Chemical Administration Methods</td>
<td></td>
</tr>
<tr>
<td>  Acute Toxicity Determinations</td>
<td>6</td>
</tr>
<tr>
<td>  Subacute Toxicity Determinations</td>
<td>6</td>
</tr>
<tr>
<td>  Acetylcholinesterase Activity Determinations</td>
<td>6</td>
</tr>
<tr>
<td>Arrangement of the Handbook</td>
<td>7</td>
</tr>
<tr>
<td>Summaries of Toxicological Data for Wildlife</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>86</td>
</tr>
<tr>
<td>Glossary</td>
<td>87</td>
</tr>
<tr>
<td>Index to Species Tested</td>
<td>88</td>
</tr>
</tbody>
</table>
Preface to the Second Edition

This second edition of the *Handbook of Toxicity of Pesticides to Wildlife* is a product of the wildlife research portion of the Environmental Contaminant Evaluation Program of the U.S. Fish and Wildlife Service. The toxicity tests summarized here were performed over a number of years at the Denver Wildlife Research Center. When all responsibility for contaminant research on wildlife was consolidated at the Patuxent Wildlife Research Center in 1975, we decided that an effort should be made to publish the large volume of toxicity data that had accumulated at the Denver Center since the first edition of the handbook was issued in 1970. Financial support for the compilation and publication of this work was provided by the Patuxent Wildlife Research Center during the years 1976–1982. R. H. Hudson has remained with this task throughout the years; this edition has been compiled largely through his efforts.

The original edition of this handbook has stood the test of time; it has become a useful and often-cited reference on what is probably the most basic estimator of chemical hazard, the acute toxicity test; it is used as much today as when it was first released more than a decade ago. This new edition should be even more useful than the earlier one because of its expanded scope and its presentation of additional data supporting toxicity estimates presented in the first edition. The handbook provides toxicity estimates of nearly 200 different chemicals or formulations, each tested on one or more of more than 30 different species. Toxicity estimates for different chemicals may not always be directly comparable, and I emphasize that the results presented here are not to be regarded as the result of a single study; rather, they summarize a large number of studies conducted for a variety of purposes. Although these data are exceedingly useful, like all toxicological data, they should be used with caution for comparative purposes.

The value of acute toxicity tests performed on wildlife has prompted much debate in the past. Even within the Fish and Wildlife Service, researchers at one time were divided over whether short-term (acute) or longer term (subacute) tests were more appropriate. The judgment derived from our cumulative experience in this area is that both types of tests are necessary if the toxicity of a chemical is to be evaluated adequately. Early experimentation showed that acute tests greatly underestimated the hazard posed by chemicals that accumulate in animals through the intake of small amounts in the diet; the subacute test was conceived to deal with this problem. Experience with the subacute test showed that it often gives misleading results with chemicals that are highly labile. Also, the subacute test gives inaccurate results when used with chemicals that tend to produce anorexia (loss of appetite), as do certain pesticides. Each type of test thus provides vital information on the hazards posed by certain types of chemicals; with chemicals for which both types of tests are appropriate, two “benchmarks” are desirable to help in predicting lethal and sublethal effects in the environment. The Patuxent Center’s commitment to both types of testing is evidenced by this volume and another on subacute toxicities that will be available soon.

We expect this handbook to be useful to researchers, to government regulators, and to those managing data banks for the benefit of these groups. It is, however, primarily meant to benefit fish and wildlife resource managers. The indications of acute toxicity provided by the handbook constitute one means by which managers can assess potential contaminant threats to wildlife resources. This handbook and others like it, together with the technical and interpretative services provided by the research laboratories, should make somewhat easier the tasks of those charged with conserving the nation’s wildlife populations.

Russell J. Hall
Assistant Director
Patuxent Wildlife Research Center
Acknowledgments

We thank the following for assistance during the testing phase: Morris C. Abeyta, C. Harold Baer, Walter A. Bowles, Jr., Mary Ellen Cameron, Truman J. Fergin, Stan E. Gaddis, Eugene A. Hillard, Brad B. Johns, Kirke A. King, Donald B. Knapp, C. Edward Knittle, Christine A. Mitchell, Kurt W. Moore, Richard E. Pillmore, Mark Ray, Michael Recktenwald, Merle L. Richmond, Earl C. Schafer, Joseph G. Zinkl, and Linda D. Zion.

We also thank the Max McGraw Wildlife Foundation in Dundee, Illinois, for providing the mallards used in many of the tests.
Handbook of
Toxicity of Pesticides
to Wildlife
Second Edition

By

Rick H. Hudson, Richard K. Tucker, and M. A. Haegele

U.S. Fish and Wildlife Service
Paxtuxent Wildlife Research Center
Laurel, Maryland 20708

Introduction

Although the problems resulting from the use of pesticides in wildlife habitats have continued to receive considerable attention in recent years, the relations involved are highly complex and knowledge in many areas is still limited. Research, operational, and administrative personnel concerned with the use of pesticides have had a longstanding need for compendia of pesticide toxicity data for wildlife species that would provide, if not final answers, at least a basis for comparison of one pesticide with another. We believe that the first edition of the *Handbook of Toxicity of Pesticides to Wildlife* (Tucker and Crabtree 1970) helped fill that need, and hope that this second edition will be even more helpful.

When the first edition of this handbook appeared, many compilations of pesticide toxicity data for laboratory animals were already available, notably for rats (Kerr and Brogden 1959; Gaines 1960, 1969; Hayes 1963; Dauterman and Guthrie 1965), but also for dogs (Lehman 1965), fish (Henderson et al., 1960:76-88), snails (Dowd and Bennett 1965), frogs (Kaplan and Overpeck 1964), and cladocerans (Anderson 1959:94-95; Sanders and Cope 1960). None of these compilations were (or have attempted to be) complete, but they represent ready references to help answer certain simple questions about the acute or chronic toxicity and the hazards of given pesticides. Other compilations of toxicity data for wildlife have recently appeared, notably Heath et al. (1972), Hill et al. (1975), Johnson and Finley (1980), Fimientel (1971), Schafer (1972), Schafer and Cunningham (1972), and Schafer (1983). During the 13 years since the first edition of this handbook was published, the fields of environmental and comparative toxicology have matured greatly. For a recent review of the literature of comparative fish and wildlife toxicology, see Tucker and Leitzke (1979).

Sensitivity to toxicants varies greatly from species to species, even within the same genus. Although toxicity figures for albino rats are often used for wildlife purposes, the are at best poor indicators of the sensitivity, for example, of pheasants. Recognizing that toxicity figures based on experiments with any one species are inadequate, we have presented data for two or more species whenever possible; birds are almost always represented. To allow the broadest use of these data, we have conducted most tests with species that are common and widely distributed in the United States. The ring-necked pheasant (*Phasianus colchicus*) and northern bobwhite (*Colinus virginianus*), for instance, are among the most frequently bagged upland game birds in this country, and the mallard (*Anas platyrhynchos*) is probably the waterfowl most commonly taken. Often, however, additional species with more restricted ranges, such as the fulvous whistling-duck (*Dendrocygna bicolor*) or the sandhill crane (*Grus canadensis*), have been included. To enable ready comparison among pesticides, nearly all the chemicals we studied were tested on one species, the mallard.

The chemicals chosen for testing included 181 pesticides, 15 other environmental pollutants, and many mixtures and formulations of pesticides. Generally, the pesticide pollutants were those to which wildlife are most likely to be exposed. Most are widely used or represent common families of chemicals used in thousands of pesticide formulations applied to forests, rangeland, aquatic habitat, or agricultural areas lived in or frequented by wildlife. Acute toxicity data and a list of the clinical signs of intoxication observed are presented for each pollutant. For some, particularly those that are likely to be applied repeatedly or to persist for a long time after single application, the results of 30-day repeated oral toxicity or feeding tests are included. Some of the pollutants were also tested for percutaneous (through the skin) toxicity.

Use of Acute Toxicity Figures

The degree of hazard presented by a pesticide depends on many complex factors. Although no single way of ex-
pressing potential hazard is completely reliable, a rapid and convenient indicator of hazard as represented by a compound's inherent toxicity is the acute oral toxicity test (the single dosage necessary to result in death). Additionally, for granular material, this test is directly applicable for the hazard evaluation.

The usual way of expressing acute toxicity is by means of an LD50 (median lethal dosage) value. The LD50 is a bioassay-based statistical estimate of the dosage (in mg chemical/kg of body weight of the animal exposed) that would be lethal to 50% of the experimental population of the test species. It is also possible to calculate such values as the LD5 or LD99, but they are (for statistical reasons) less precise than the corresponding LD50 and more difficult to determine. Although LD50's give no information on the dosage that would be lethal to every individual of the species, nor on treatment given in some other way than in the test, the LD50 value, with its confidence limits, is probably the most convenient and reliable means available for comparing the inherent toxicity of chemicals.1

How the LD50 figures in this handbook are used is largely a matter for the reader to decide, but they should be regarded only as guides or benchmarks. They are meaningful only in the context of other information on the pesticide's physicochemical and biological properties and the rates and methods of application, most of which can readily be found in the scientific literature or in technical bulletins provided by the manufacturers.

When the LD50 is used to evaluate the safety or hazard of a pesticide used in the field, many factors must be considered. To span the gap between the sensitivity of a species in the laboratory (pharmacological vulnerability) and its vulnerability in the field (ecological vulnerability), such factors as the following must be taken into account:

- The amount of pesticides applied per unit area or unit time.
- The degree of contamination of different environmental components such as air, water, vegetation, as influenced by such factors as the carrier in the pesticide formulation, the evenness of application, wind, temperature, vegetative composition, and other possible variables.
- The various species present in the habitat when the pesticide is applied.
- Routes by which the animals contact the pesticide (oral, dermal, inhalation), as well as the amount and duration of contact with different components of the environment (e.g., fish contact water but not trees).
- Persistence of the pesticide (chemical breakdown rates, transfer between environmental components, and other variables).
- Formation of biologically active metabolites and their distribution.
- Degree of accumulation of the pesticide or its active metabolites in the animals.

For a more detailed discussion of the factors involved in extrapolating the field hazard of a chemical from laboratory data, see Dewitt (1966), Kenaga (1968), and Tucker and Leitzke (1979).

Although the acute toxicity figure is the basic one and the one most easily compared from chemical to chemical, it is not always the most sensitive measure of potential hazard. Compounds that are poorly absorbed or are cumulative in action are better tested by long-term feeding (if the chemical does not break down in feed or produce aversion) or by repeated oral doses.

Finally, although mortality is a conveniently measured effect, it should be recognized that levels of pesticide that do not kill may nevertheless produce subtle, yet damaging, effects on animals, such as inhibition of reproduction or impairment of ability to escape from predators. These sublethal effects must be considered in conjunction with the LD50 in any comprehensive evaluation of a pesticide's potential safety.

Signs of Intoxication

The pattern of clinical signs of intoxication produced by a toxic chemical is often helpful in diagnosis and as a starting point in studies of the mode of action. Therefore, in addition to the acute oral LD50 for each pesticide, the signs and behavioral changes observed in the test animals after dosing are listed (and defined in a glossary when not self-explanatory). We hope that this information will help biologists in the field to know what signs to look for when assessing short-term effects of pesticides on wild populations. The signs may also aid workers to arrive at a tentative identification of the pesticide involved when only a few known pesticides have been applied to an area. Although it is unlikely that signs alone can ever definitively identify a toxicant, they can sometimes eliminate certain known toxicants from further consideration. When the development of toxic signs produced a clear-cut pattern, we have also included notes on the timing of the toxic effects, because such factors as the time of onset, duration, and time of remission (disappearance of toxic signs and recovery of the test animal) can have implications for the speed and thoroughness of absorption, the rate of metabolism or elimination and the accumulation of residues in the tissues.

Methodology

Data reported in this handbook resulted from research conducted at the Denver Wildlife Research Center, Denver, Colorado, under the program of Pesticide-Wildlife Studies; therefore, at least one source of bias—interlaboratory variation—has been avoided.

1Much of the wording in this paragraph has been paraphrased from Hayes (1963:3--4), whose lucid explanation of acute toxicity seemed clearer than any discussion we could produce independently.
Source of Animals

Healthy pen-reared or captivity-conditioned animals were used for all determinations. The use of biologically active chemicals was avoided on or near the animals during rearing and holding.

The following species, listed in phylogenetic order, were pen-reared from stock lines:

- Mallard
- Greater prairie chicken
- Sharp-tailed grouse
- Northern bobwhite
- California quail
- Japanese quail
- Ring-necked pheasant
- Chukar
- Ring-billed gull
- Ringed plover
- Mule deer

- Domestic goat

The following species, listed in phylogenetic order, were live-trapped, donated, or purchased from various sources:

- Bullfrog
- Canada goose
- Pulvus whistling-duck
- Mallard (MM)
- Northern pintail
- Golden eagle
- Northern bobwhite

- (HGF)
- Ring-necked pheasant
- Gray partridge
- Wild turkey
- Sandhill crane
- Rock dove
- (domestic pigeon)
- White-winged dove
- Mourning dove
- Horned lark
- House sparrow
- Red-winged blackbird
- House finch
- Dark-eyed junco
- White-crowned sparrow
- Albino rat
- Domestic ferret
- (European polecat)

An index to the species of animals and the toxicants tested with each is provided at the end of this handbook. Bird names are according to the Thirty-fourth Supplement to the American Ornithologists' Union Check-list of North American Birds (1982).

Selection and Treatment of Test Animals

On the evening before testing, or earlier if necessary, the animals to be tested were taken from a holding pen and placed in the test pens; weak or injured individuals were culled at this time. All test animals underwent a pretreatment fasting period to avoid the effects of variable stomach contents on absorption and to bring each near the basal metabolic state. Fasting periods were 24 h for deer and goats; 2 to 4 h for doves, sparrows, finches, and juncos; and 16 to 20 h for all other species.

On the morning of the test (after the pretreatment fasting period), all animals were weighed. They were then assigned to treatment groups on the basis of body weight, with each toxicant dosage level to be administered to groups including individuals of low, medium, and high body weight. Test animals for feeding studies and water concentration exposure studies were randomly assigned to treatment groups.

Water was available ad libitum in the swimming ponds used for tests on waterfowl, or in appropriate watering devices. Except during the pretreatment fasting periods, food was available ad libitum.

Source of Chemicals

The tested materials—technical, analytical, or reagent grade samples of known (and generally high) purity—were received directly from their manufacturers, whom we thank for making them available, or from various cooperators. The purities are given in the chemical summaries. Trivial and trade names, as well as chemical names (nomenclature after Chemical Abstracts, 9th Chemical Index) and common synonyms of the materials tested, are also given to facilitate identification. In recent years an effort has been made to use the common name for a pesticide, rather than a brand name, whenever possible. Thus, in this edition of the handbook, we have attempted to use the commonly accepted names for the pesticides. Where possible, these and the chemical names have been taken from Bla-lock et al. (1979). Other names have been taken from technical bulletins, Spencer (1973), and Berg (1975).

Chemical Administration Methods

Oral administration was accomplished by inserting gelatin capsules containing the test chemical through glass tubing to the level of the crop, proventriculus, or stomach. The capsules were administered to goats and deer orally with a balling gun into the upper esophagus. The test
Materials were accurately weighed or microsyringed into the capsules from precisely diluted acetone solutions. The acetone was evaporated at room temperature before the capsules were closed. Some liquid toxicants or suspensions of solutions of toxicants (denoted in the tables by “st”) were administered into the esophagus with ball-tipped oral intubation needles.

Pure materials were administered whenever possible. We used carriers (such as distilled water, corn oil, or acetone) only when absolutely necessary for accurate administration of the toxicant. When a stomach tube was used for toxicant administration, usually the pure material was in liquid form already or was a technical material with a carrier that was of toxicological interest. Toxicants that were administered in a carrier solution are listed in Table 1.

The following methods were used for the percutaneous toxicity determinations with mallards. On the evening before treatment, the feet of the birds were inspected for

<table>
<thead>
<tr>
<th>Chemical and test animal</th>
<th>Type of test</th>
<th>Carrier</th>
<th>Final volume (µL/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>Ceresan L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard</td>
<td>spo</td>
<td>Distilled water</td>
<td>0.11</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>po</td>
<td>Distilled water</td>
<td>0.75</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard duckling</td>
<td>po</td>
<td>4% Gum acacia in distilled water</td>
<td>6.63</td>
</tr>
<tr>
<td>Rock dove</td>
<td>po</td>
<td>3% Gum acacia in distilled water</td>
<td>2.69</td>
</tr>
<tr>
<td>Albino rat</td>
<td>po</td>
<td>4% Gum acacia in distilled water</td>
<td>8.82</td>
</tr>
<tr>
<td>Cyalone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard</td>
<td>po</td>
<td>Distilled water</td>
<td>0.11</td>
</tr>
<tr>
<td>D.M. 7537</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard</td>
<td>po</td>
<td>4% Gum acacia in distilled water</td>
<td>6.87</td>
</tr>
<tr>
<td>Northern pintail</td>
<td>po</td>
<td>1% Gum acacia in distilled water</td>
<td>2.91</td>
</tr>
<tr>
<td>House sparrow</td>
<td>po</td>
<td>Acetone</td>
<td>0.08</td>
</tr>
<tr>
<td>Albino rat</td>
<td>po</td>
<td>4% Gum acacia in distilled water</td>
<td>5.74</td>
</tr>
<tr>
<td>Fenthion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mourning dove</td>
<td>po</td>
<td>Acetone and 5% Gum acacia in distilled water</td>
<td>0.20</td>
</tr>
<tr>
<td>House sparrow</td>
<td>po</td>
<td>Acetone</td>
<td>8.84</td>
</tr>
<tr>
<td>House finch</td>
<td>po</td>
<td>Acetone</td>
<td>0.39</td>
</tr>
<tr>
<td>Mestranol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red-winged blackbird</td>
<td>po</td>
<td>Distilled water</td>
<td>12.00</td>
</tr>
<tr>
<td>Mexacarbate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard duckling</td>
<td>po</td>
<td>4% Gum acacia in distilled water</td>
<td>3.66</td>
</tr>
<tr>
<td>Mourning dove</td>
<td>po</td>
<td>Acetone</td>
<td>0.35</td>
</tr>
<tr>
<td>House finch</td>
<td>po</td>
<td>Acetone</td>
<td>0.26</td>
</tr>
<tr>
<td>Methamidophos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard</td>
<td>po</td>
<td>Distilled water</td>
<td>0.05</td>
</tr>
<tr>
<td>Nosema locustae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard</td>
<td>po</td>
<td>Distilled water</td>
<td>4.72</td>
</tr>
<tr>
<td>Ring-necked pheasant</td>
<td>po</td>
<td>Distilled water</td>
<td>10.20</td>
</tr>
<tr>
<td>Nucleopolyhedral virus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House sparrow</td>
<td>po</td>
<td>Distilled water</td>
<td>17.70</td>
</tr>
</tbody>
</table>
Table 1. Continued.

<table>
<thead>
<tr>
<th>Chemical and test animal</th>
<th>Type of test</th>
<th>Carrier</th>
<th>Final volume (μL/g) Mean</th>
<th>Upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphamidon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard</td>
<td>po</td>
<td>Distilled water</td>
<td>1.20</td>
<td>2.02</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>po</td>
<td>Distilled water</td>
<td>1.01</td>
<td>2.15</td>
</tr>
<tr>
<td>Ring-necked pheasant</td>
<td>po</td>
<td>Distilled water</td>
<td>0.17</td>
<td>0.24</td>
</tr>
<tr>
<td>White-winged dove</td>
<td>po</td>
<td>Distilled water</td>
<td>1.08</td>
<td>1.80</td>
</tr>
<tr>
<td>Albino rat</td>
<td>po</td>
<td>0.1% Yuma Chemical “Spreader A” in distilled water</td>
<td>3.86</td>
<td>4.62</td>
</tr>
<tr>
<td>Polychlorinated biphenyls:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor 1254</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albino rat</td>
<td>po</td>
<td>Corn oil</td>
<td>0.75</td>
<td>1.01</td>
</tr>
<tr>
<td>Aroclor 1268</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albino rat</td>
<td>po</td>
<td>Corn oil</td>
<td>2.84</td>
<td>3.99</td>
</tr>
<tr>
<td>Starlicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard</td>
<td>po</td>
<td>Distilled water</td>
<td>0.65</td>
<td>1.54</td>
</tr>
<tr>
<td>Mallard</td>
<td>po</td>
<td>Corn oil</td>
<td>0.84</td>
<td>1.73</td>
</tr>
<tr>
<td>Mallard</td>
<td>po</td>
<td>Propylene glycol</td>
<td>0.40</td>
<td>0.86</td>
</tr>
<tr>
<td>Strychnine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring-necked pheasant</td>
<td>po</td>
<td>Distilled water</td>
<td>1.11</td>
<td>2.40</td>
</tr>
<tr>
<td>Mourning dove</td>
<td>po</td>
<td>Distilled water</td>
<td>1.77</td>
<td>3.20</td>
</tr>
<tr>
<td>House sparrow</td>
<td>po</td>
<td>Distilled water</td>
<td>6.91</td>
<td>12.80</td>
</tr>
<tr>
<td>TCDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard</td>
<td>po</td>
<td>Corn oil</td>
<td>—</td>
<td>7.20</td>
</tr>
<tr>
<td>Northern bobwhite</td>
<td>po</td>
<td>Corn oil</td>
<td>0.94</td>
<td>2.00</td>
</tr>
<tr>
<td>Ringed turtle-dove</td>
<td>po</td>
<td>Corn oil</td>
<td>—</td>
<td>54.00</td>
</tr>
<tr>
<td>Zinc phosphide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horned lark</td>
<td>po</td>
<td>Corn oil</td>
<td>9.18</td>
<td>35.70</td>
</tr>
<tr>
<td>1080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard</td>
<td>po</td>
<td>Distilled water</td>
<td>2.00</td>
<td>3.22</td>
</tr>
<tr>
<td>Mallard duckling</td>
<td>po</td>
<td>Distilled water</td>
<td>0.56</td>
<td>1.27</td>
</tr>
<tr>
<td>Mallard</td>
<td>po</td>
<td>Distilled water</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>California quail</td>
<td>po</td>
<td>Distilled water</td>
<td>0.42</td>
<td>0.84</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>po</td>
<td>Distilled water</td>
<td>7.54</td>
<td>14.40</td>
</tr>
<tr>
<td>Ring-necked pheasant</td>
<td>po</td>
<td>Distilled water</td>
<td>0.80</td>
<td>1.53</td>
</tr>
<tr>
<td>Chukar</td>
<td>po</td>
<td>Distilled water</td>
<td>0.71</td>
<td>1.13</td>
</tr>
<tr>
<td>Rock dove</td>
<td>po</td>
<td>Distilled water</td>
<td>3.62</td>
<td>7.99</td>
</tr>
<tr>
<td>Mourning dove</td>
<td>po</td>
<td>Distilled water</td>
<td>0.48</td>
<td>0.72</td>
</tr>
<tr>
<td>House sparrow</td>
<td>po</td>
<td>Distilled water</td>
<td>1.18</td>
<td>2.00</td>
</tr>
<tr>
<td>Domestic ferret</td>
<td>po</td>
<td>Distilled water</td>
<td>2.50</td>
<td>4.00</td>
</tr>
</tbody>
</table>

*po = acute oral; spo = subacute oral.

cuts, cracks, or abrasions; only those with feet in good condition were used. The feet were then rinsed in warm water to remove any foreign particles. The next morning, before treatment, the crura were shaved with an electric clipper to facilitate taping of plastic bags which were used to cover the exposed areas. The chemicals were dissolved or suspended by ultrasonic dispersion in corn oil or propylene glycol in quantities to enable application of about 0.6 mL of solution to each foot. This amount was found to be the minimum amount which would wet the entire surface area. The area covered included the tarso-metatarsus, phalanges, and webbing, which constitutes approximately 12% of the body surface area of a full-grown mallard. Each foot was then covered with a plastic bag which extended midway up the crus. After 24 h, the bags were removed and the feet washed with mild soap and warm water. Control birds were
concurrently sham treated with the carriers. The quantity of toxicant administered was based on the body weight of each individual treated.

Acute Toxicity Determinations

After initial range-finding dosages were administered, two to seven animals at each of several (usually four) dosage levels were used for each LD50 determination. The number of animals at the dosage levels for each test was kept constant to enable computation of the acute oral LD50 or percutaneous LD50 by the methods of Thompson (1947) and Weil (1952).

Final mortality counts were made after a 14-day observation period following treatment, except that when animals were still showing outward evidence of intoxication at 14 days, the observation period was extended until death or remission occurred. This period was never more than 36 days, although with chlorinated organics and mercurials it frequently lasted up to 28 days.

Usually the observations were made continually for 3–4 h after dosing, several more times during the first day of the test, and once daily thereafter. Gross necropsies were performed at the end of the observation period or at death. Survivors were sacrificed by CO2 asphyxiation.

Subacute Toxicity Determinations

An empirical value that represented the minimum repeated oral dosage (in mg/kg per day) that was lethal in 30-day tests, was determined for some pesticides. This value was found by orally administering the chemical daily for 30 days to three males and three females of the test species. Such groups of six were treated at geometrically spaced dosage levels until levels were found that produced the following: in 30 days, no deaths, one or two deaths, and three to six deaths. The lowest daily oral dosage that produced one or two deaths by the end of the 30-day period was called the 30-day empirical minimum lethal dosage (30-day EMLD). Controls for these tests were run concurrently and were sham dosed with empty gelatin capsules. Dietary LC50 studies were performed using the methods of Heath et al. (1972).

Acetylcholinesterase Activity Determinations

When brain acetylcholinesterase (AChE) activity was measured, we used a modification of the method of Michele (1949) (Hawkins and Knittle 1972). Determinations of AChE activity were made on the brains of birds tested with carbaryl (ring-necked pheasant), carbofuran (ring-necked pheasant), dimethoate (ring-necked pheasant), disulfoton (ring-necked pheasant), EPN (mallard), fenitrothion (ring-necked pheasant), leptoophos (northern bobwhite), malathion (horned lark), methiocarb (horned lark), methyl parathion (mallard, northern bobwhite, red-winged blackbird), and phorate (ring-necked pheasant).

Arrangement of the Handbook

In the following summaries, toxicity information is given separately for each pesticide. Chemicals are arranged alphabetically by their common names whenever possible, or by their most commonly used trade names. Other names (common, trade, and trivial) are also included in the alphabetical sequence for easy cross-reference.

Under each chemical heading are listed any alternative names, the chemical name, the pesticide's primary usages, and the purity of the samples tested. Chemical names follow the current system of nomenclature of Chemical Abstracts, 9th Chemical Index. The Chemical Abstract Service (CAS) number, when known, follows the chemical name.

The next entry is a summary table of acute oral toxicity values. The test animals are arranged in the first column according to phylogenetic order. When different samples of the pesticide were tested, the purity of the sample used on each test animal is denoted by a superscript number that refers to the "Sample Purity" preceding the table. Such superscript numbers are also used to indicate sample purity associated with alternative names given for some chemicals and in some discussions under "Other Toxicity Data."

The number of animals included in the statistical calculation of the LD50 is given in the second column. Commonly, more individuals were tested than were used in the calculation.

The sex of the animals tested is given in the third column. Although sex-related differences in susceptibility to pesticides often appear among mammals, notably rats (Kerr and Brogden 1959), our work and that of others (Dahlen and Haugen 1954) indicate that pronounced sex-related differences in acute toxicity are uncommon among birds.

The fourth column gives the age of the test animals in months. When age was not known, a dash appears. Estimated ages were sometimes used; abbreviations appearing in the tabular data are J for juvenile; I for immature; A for adult; and h for hours, d for days, wk for weeks. Differences in sensitivity due to age can be expected, but our work indicates that these are generally small. Immature and senescent animals were avoided in favor of young but sexually mature (or nearly sexually mature) test animals, thus lessening the chance of death unrelated to the treatment. For further discussion of age-sensitivity relations, see Hudson et al. (1972). Unless specifically mentioned in the toxicity tables as a footnote to the age, the test animals were not in active breeding condition, either because they were young of the year and not yet sexually mature, or they were tested at times of the year when they were reproductively inactive and reproductive organs were regressed.

The fifth column gives the LD50 value in milligrams (or milliliters) of toxicant per kilogram of body weight (mg/kg;
mL/kg). Each LD50 is followed by the 95% confidence limits (CL). When confidence limits were not calculable because of an all-or-none effect at the dosages used, either a dash is placed in the parentheses, or the confidence limits have been replaced by the range from the highest dosage producing no mortality to the lowest dosage producing 100% mortality and this range has been given in brackets instead of parentheses. When no LD50 was calculable because of either heterogeneity of the dose-response data or the limited number of animals available, the two figures bracketing the range where we estimated the LD50 would lie are given (e.g., “200-400”). No confidence limits are shown when (1) few, if any, animals died at the highest dosage given and the LD50 is given as “greater than” (> the highest dosage; (2) no toxic signs were produced even at the highest level and the LD50 is given as “much greater than” (≥) the highest level administered; and (3) no animals survived at any treatment level and the LD50 value is given as “less than” (<) the lowest dosage tested. The conventions described (giving confidence limits in parentheses and estimated ranges in brackets) are followed in the sections on “Other Toxicity Data” as well as in the “Acute Oral Toxicity” summaries.

A list of the toxic signs and behavioral changes in the test animals is given after the summary table. These are the characteristic signs that occurred when the animals were given lethal or near-lethal dosages; they were observed in one or more, but not necessarily all, of the species tested. When pronounced signs occurred at levels much lower than the lethal level, the minimum sign-producing dosage is given. The signs have been listed in their approximate order of onset, but the order can vary from species to species and from individual to individual. A glossary of technical terms used in describing signs of intoxication is given after the references section, near the end of the handbook.

The section on “Other Toxicity Data” lists any additional observations about acute toxicity that may be of value, and gives the results of percutaneous toxicity tests, 30-day repeated oral tests, and chronic feeding tests with the pesticide when those were conducted. The 30-day repeated oral results are expressed as a 30-day EMLD value (this terminology is explained in the section on “Methodology—Subacute Toxicity Determinations”). When too few animals were available for a complete EMLD series, as often happened with mule deer, we have given the two figures that bracket the range in which we would expect the 30-day EMLD to lie.

The value of the 30-day oral test, or similar measurements of chronic toxicity (Hayes 1967), lies in showing the cumulative action of the test chemical. A useful index of cumulation is the ratio of the single oral LD50 (mg/kg) to the 30-day EMLD (mg/kg per day). This ratio, which we have called the “cumulative toxicity index,” is also included, along with a few words indicating how the pesticide compares with others in its chemical group. For example, mexacarbate, with an index of 3.00/1.25 = 2.40, shows practically no cumulative action, whereas dieldrin, with an index of 381/5.00 = 76.2, is highly cumulative, even for a chlorinated organic insecticide.

Other information on a given chemical has been included in a “Notes” section which follows the section on “Other Toxicity Data.” For example, the “Notes” section may discuss the results of gross necropsies, or give the results of brain acetylcholinesterase activity measurements.

Summaries of Toxicological Data for Wildlife

A-33: see Airkem A-33 Dry
A 363: see aminocarb
AAT: see parathion
AAtrix: see atrazine
Abaphos: see temephos
Abar: see leptophos
Abate: see temephos
Abatox: see temephos
AC-3422: see parathion
AC-3911: see phorate
AC-4049: see malathion
AC-12880: see dimethoate
AC-18133: see thionazin
AC-18682: see dimethoate
AC-38023: see famphur
AC-47031: see Cyclone
AC-52160: see temephos
Acarin: see dicofood
Acarol: see bromopropylate
Accelerate: see endothall
Accothion: see fenitrothion
Acesaphthene: see PanaSol AN-2

ACEPHATE

Alternative Names: ENT 27822, Orthene, Ortho 12420, Ortran
Chemical Name: Acetylphosphoramidothioic acid, O, S-dimethyl ester (CAS-30560-19-1)
Primary Use: Insecticide
Sample Purity: 93.2%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
<th>95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>4-6</td>
<td>234</td>
<td>(186-295)</td>
</tr>
</tbody>
</table>
mL/kg). Each LD50 is followed by the 95% confidence limits (CL). When confidence limits were not calculable because of an all-or-none effect at the dosages used, either a dash is placed in the parentheses, or the confidence limits have been replaced by the range from the highest dosage producing no mortality to the lowest dosage producing 100% mortality and this range has been given in brackets instead of parentheses. When no LD50 was calculable because of either heterogeneity of the dose-response data or the limited number of animals available, the two figures bracketing the range where we estimated the LD50 would lie are given (e.g., "200–400"). No confidence limits are shown when (1) few, if any, animals died at the highest dosage given and the LD50 is given as "greater than" (>) the highest dosage; (2) no toxic signs were produced even at the highest level and the LD50 is given as "much greater than" (>>) the highest level administered; and (3) no animals survived at any treatment level and the LD50 value is given as "less than" (<) the lowest dosage tested. The conventions described (giving confidence limits in parentheses and estimated ranges in brackets) are followed in the sections on "Other Toxicity Data" as well as in the "Acute Oral Toxicity" summaries.

A list of the toxic signs and behavioral changes in the test animals is given after the summary table. These are the characteristic signs that occurred when the animals were given lethal or near-lethal dosages; they were observed in one or more, but not necessarily all, of the species tested. When pronounced signs occurred at levels much lower than the lethal level, the minimum sign-producing dosage is given. The signs have been listed in their approximate order of onset, but the order can vary from species to species and from individual to individual. A glossary of technical terms used in describing signs of intoxication is given after the references section, near the end of the handbook.

The section on "Other Toxicity Data" lists any additional observations about acute toxicity that may be of value, and gives the results of percutaneous toxicity tests, 30-day repeated oral tests, and chronic feeding tests with the pesticide when those were conducted. The 30-day repeated oral results are expressed as a 30-day EMLD value (this terminology is explained in the section on "Methodology—Subacute Toxicity Determinations"). When too few animals were available for a complete EMLD series, as often happened with mule deer, we have given the two figures that bracket the range in which we would expect the 30-day EMLD to lie.

The value of the 30-day oral test, or similar measurements of chronic toxicity (Hayes 1967), lies in showing the cumulative action of the test chemical. A useful index of cumulation is the ratio of the single oral LD50 (mg/kg) to the 30-day EMLD (mg/kg per day). This ratio, which we have called the "cumulative toxicity index," is also included, along with a few words indicating how the pesticide compares with others in its chemical group. For example, mexacarbate, with an index of 3.00/1.25 = 2.40, shows practically no cumulative action, whereas dieldrin, with an index of 381/5.00 = 76.2, is highly cumulative, even for a chlorinated organic insecticide.

Other information on a given chemical has been included in a "Notes" section which follows the section on "Other Toxicity Data." For example, the "Notes" section may discuss the results of gross necropsies, or give the results of brain acetylcholinesterase activity measurements.

Summaries of Toxicological Data for Wildlife

- **A-33:** see Alkem A-33 Dry
- **A 365:** see aminocarb
- **AAT:** see parathion
- **AAtrex:** see atrazine
- **Abaphos:** see temephos
- **Abar:** see leptophos
- **Abate:** see temephos
- **Abathion:** see temephos
- **AC-3422:** see parathion
- **AC-3911:** see phorate
- **AC-4049:** see malathion
- **AC-12880:** see dimethoate
- **AC-18133:** see thionazin
- **AC-18682:** see dimethoate
- **AC-38023:** see famphur
- **AC-47031:** see Cyolan
- **AC-52160:** see temephos
- **Acarin:** see dicofol
- **Acarol:** see bromopropylate
- **Accelerate:** see endothall
- **Accothion:** see fenitrothion
- **Acrenaphthene:** see Panasol AN-2

ACEPHATE

Alternative Names: ENT 27822, Orthene, Ortho 12420, Ortran

Chemical Name: Acetylphosphoramidothioic acid, O, S-dimethyl ester (CAS-30560-19-1)

Primary Use: Insecticide

Sample Purity: 93.2%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
<th>95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>4-6</td>
<td>234</td>
<td>(186-295)</td>
</tr>
</tbody>
</table>

...
ACROLEIN

Alternative Names: Aqualin, acrolein, acrylic aldehyde, hydroacrolein, acraldehyde, Magnacide H

Chemical Name: 2-Propanal (CAS 107-02-8)

Primary Use: Aquatic herbicide, fungicide

Sample Purity: 92%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3-5</td>
<td>9.11 (6.32-13.1)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation, reluctance to leave the swimming pond, slow responses, ataxia, geotaxis, imbalance, phonation, wing tremors, running and falling, asthenia, myasthenia, and withdrawal. Treatment levels as low as 3.33 mg/kg produced signs. Signs appeared as soon as 10 min and persisted up to 36 days after treatment. Mortalities occurred as soon as 32 min; however, several mortalities occurred several days after treatment.

Acryaldehyde: see acrolein
Acrylic aldehyde: see acrolein
Acti-Aid: see cycloheximide
Actidione: see cycloheximide
Actispray: see cycloheximide
AG-500: see Diazinon
Agridip: see coumaphos
Agrisol: see trichloronat
Agritol: see Bacillus thuringiensis (Bérliner)
Agrotix: see trichloronat
Agroson: see PMA
Agrotest: see 2,4-D
Agrothion: see fenithrothion

AIRKEM A-33 DRY

Alternative Names: A-33; for active ingredient: benzanilide, BTC, Rosal, Zephiran chloride

Chemical Name: Mixture of n-alkyl (93% C14, 4% C12, 3% C16) dimethyl benzyl ammonium chloride, tetrasodium ethylene diamine tetraacetate, and essential oils

Primary Use: Industrial detergent - bactericide, fungicide, disinfectant, and odor counteractant

Sample Purity: 14% Active

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>7</td>
<td>M</td>
<td>3-4</td>
<td>>2,262</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Profuse regurgitation, polydipsia, hypoactivity, wings crossed over back, and ataxia. Treatment levels as low as 200 mg/kg produced signs, but no mortalities occurred at levels up to 2,262 mg/kg. Signs appeared as soon as 13 min after treatment and persisted up to 1 week.

AKTON

Alternative Names: Axiom, ENT 27102, SD 9098

Chemical Name: Phosphorothioic acid, O-[2-chloro-1-(2,3-dichlorophenyl)ethenyl] O,O-diethyl ester (CAS 1757-18-2)
Primary Use: Insecticide

Sample Purity: 98.5%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>23</td>
<td>M</td>
<td>3–5</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Goose-stepping ataxia, walking on toes, tails pointed sharply upward, wing droop or wings crossed high over back, dyspnea, falling. Signs were noticeable by 15–30 min but not at 24 h. Treatment levels as low as 10 mg/kg produced definite signs; levels greater than 900 mg/kg produced moderate weight losses.

Note: Gross necropsies showed petechiation on heart surface, gastrointestinal hyperemia, and congestion of pancreas in some sacrificed birds.

AL-50: see Dicloran

ALACHLOR

Alternative Names: CP 50144, Lasso, Lazo

Chemical Name: 2-Chloro-N-(2,6-dimethylphenyl)-N-(methoxymethyl)-acetamide (CAS 15972-60-8)

Primary Use: Preemergence herbicide

Sample Purity: 88.5%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, goose-stepping ataxia, imbalance, slowness, and tenseness. Signs appeared as soon as 25 min and persisted up to 2 days after treatment.

ALDICARB

Alternative Names: Ambush, ENT 27093, OMS-771, Temik, UC 21149, WHO OMS-771

Chemical Name: 2-Methyl-2-(methylthio)propanal O-[(methylamino) carbonyl]oxime (CAS 116-06-3)

Primary Use: Insecticide, acaricide, nematicide

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3–4</td>
<td>3.40 (2.70–4.28)</td>
</tr>
<tr>
<td>California quail</td>
<td>20</td>
<td>M</td>
<td>10a</td>
<td>2.58 (1.96–3.40)</td>
</tr>
<tr>
<td>California quail</td>
<td>15</td>
<td>F</td>
<td>10a</td>
<td>4.67 (3.32–6.56)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3–4</td>
<td>5.34 (3.85–7.40)</td>
</tr>
</tbody>
</table>

*These birds were in the early stages of reproductive gonadal development.

Other Toxicity Data: The calculated percutaneous LD50 for eight 1-year-old mallard drakes after a 24-h dermal foot exposure was 60.0 (CL 30.0–120) mg/kg. Signs observed after percutaneous treatment, in addition to several of those listed above, included slowness, tenseness, nasal exudate, penile extrusion, and terminal wing-beat convulsions. Mortalities usually occurred between 15 and 85 min after the initiation of percutaneous treatment, and signs persisted up to 2 days after the end of treatment. Mild dermal irritation occurred after percutaneous exposure to aldicarb. When the percutaneous LD50 is compared with the acute oral LD50, aldicarb appears to have a relatively low degree of dermal hazard in mallards.

The 30-day EMLD for mallards (n = 12) is 1.20 mg/kg per day for both sexes. The resulting cumulative toxicity index is 3.4/1.2 = 2.8, indicating little cumulative action for aldicarb in mallards.

Notes: For data on the effects of age on the sensitivity of mallards to aldicarb, see Hudson et al. (1972).

For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

ALDRIN

Alternative Names: Aldrite, Aldrosol, Compound 118, ENT 15949, HHDN, Octalene, Seedrin
Chemical Name: 1,2,3,4,10,10-Hexachloro-1,4,4a,5,8,8a-hexahydro-1,4:5,8-dimethanonnaphthalene (CAS 309-00-2)

Primary Use: Insecticide

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50</th>
<th>95%CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulvous whistling-duck</td>
<td>8</td>
<td>M</td>
<td>3-6</td>
<td>29.2</td>
<td>[22.2-38.4]</td>
</tr>
<tr>
<td>Mallard</td>
<td>16</td>
<td>F</td>
<td>3-4</td>
<td>520</td>
<td>[229-1,210]</td>
</tr>
<tr>
<td>Bobwhite</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>6.59</td>
<td>[5.00-8.66]</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>16.8</td>
<td>[14.1-20.0]</td>
</tr>
<tr>
<td>Mule deer</td>
<td>4</td>
<td>M</td>
<td>12-18</td>
<td>18.8-37.5</td>
<td></td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, circling, low carriage, nictitating membrane closed for long periods, fluffed feathers, tremors, phonation, violent wing-beat convulsions, seizures, opisthotonos. Deaths occurred 30 min to 10 days after treatment. Weight losses occurred among survivors of the higher treatment levels. Signs observed in deer included several of those listed above, as well as tensity, fasciculation, eyes opened wider than normal, salivation, falling, sternal recumbancy, thrashing of the head, and violent convulsions.

Other Toxicity Data: The 30-day EMLD for mallards 17 to 23 weeks old (n = 12) is about 5.0 mg/kg per day for both sexes. The resulting cumulative toxicity index is 520/5 = 104, indicating an extremely high degree of cumulative action, even for an organochlorine compound.

Rice seed treated with 2.5 g/kg of 44.2% aldrin and 1.56 g/kg of a 3.51% active formulation of Ceresan L was administered to adult fulvous whistling-ducks (n = 8). The calculated acute oral LD50 for the treated seed is 7.94 (CL 5.83-10.8) g/kg, or about 4 g of dry rice per duck (about 166 seeds). This amount is much less than such seeds would ingest in one feeding. The LD50 amount is equivalent to 8.77 mg/kg aldrin and 0.279 mg/kg Ceresan L—thus most of the toxic action could apparently be attributed to aldrin.

A 2:1 mixture of aldrin (95%) and Ceresan M (7.7% active) was administered to gray partridge cocks (n = 12), 9 to 20 months old. The calculated acute oral LD50 is 33.1 [26.2-41.6] mg/kg; this dosage is 22.1 mg/kg aldrin and 11.0 mg/kg Ceresan M; Aldrin apparently contributed predominantly to the toxicity of this mixture, since the LD50 for Ceresan M has been determined to be 550 mg/kg.

Note: Gross necropsies revealed liver adhesions to the parietal peritoneum in some birds.

Aldrite: see aldrin
Aldrosol: see aldrin
Alfa-tox: see Diazinon
Aliphatic amine, primary: see Armeen OD
Alkron: see parathion
Alkylbenzenes: see Panasol AN-2
Alleron: see parathion

ALLETHRIN

Alternative Names: Allyl homologue of cinerin I, ENT 17510, pallethrine, Pynamin

Chemical Name: 2,2-Dimethyl-3-(2-methyl-1-propenyl)-cyclopropane-carboxylic acid, 2-methyl-4-oxo-3-(2-propenyl)-2-cyclopenten-1-yl ester (CAS 584-79-2)

Primary Use: Insecticide

Sample Purity: 90%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>6</td>
<td>M</td>
<td>3-4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: None.

Note: Allethrin is the allyl homologue of cinerin I, which is one of the constituents of pyrethrum, the oldest known insecticide.

Allisan: see dicrolan
Alltex: see toxaphene
Allyl homologue of cinerin I: see allethrin
Altosid: see methoprene
Alvit: see dieldrin
Ambush: see aldicarb
Amchem 66-206: see chloramben
American Cyanamid 3422: see parathion
American Cyanamid 3911: see phorate
American Cyanamid 18133: see thionazin
American Cyanamid 38023: see fampur
American Cyanamid 43064: see Cyylan
Amerol: see amitrole
Amiben: see chloramben
Amine, primary aliphatic: see Armeen OD
AMINOCARB

Alternative Names: A 363, BAY 44646, ENT 25784, Matacil

Chemical Name: 4-(Dimethylamino)-3-methyl-phenol, methylcarbamate(ester) (CAS 2032-59-9)

Primary Use: Insecticide

Sample Purity: 97%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>8</td>
<td>22.5 (17.8–28.3)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>42.4 (33.7–53.4)</td>
</tr>
<tr>
<td>Mule deer</td>
<td>3</td>
<td>M</td>
<td>13–15</td>
<td>7.50–15.0</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, tenseness, lacrimation, salivation, tachypnea, feathers fluffed or drawn tightly against body, pilorection, diarrhea, dyspnea, tracheal congestion, wing-beat convulsions or opisthotonos. Mortality among birds usually occurred in the first hour after treatment.

6-AMINONICOTINAMIDE

Alternative Names: DID 764, DRC-3492

Chemical Name: 6-Aminonicotinamide

Primary Use: Experimental rodenticide

Sample Purity: 100%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>7.95 (6.35–10.1)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, imbalance, ptosis, falling, and tremors. Signs appeared as soon as 30 min and mortalities usually occurred 1–2 days after treatment; however, one drake died 12 days after treatment. Signs persisted up to 3 or 4 weeks after treatment. Weight losses in the survivors 30 days after treatment were substantial.

AMITROLE

Alternative Names: Amerol; aminotriazole; Amino Triazole; Amizol; 3,A-T; ATA; Cytrol; ENT 25445; Herbicide; Weedazol

Chemical Name: 1,2,4-Triazol-3 amine (CAS 61-82-5)

Primary Use: Herbicide

Sample Purity: 90%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>6</td>
<td>M</td>
<td>3–4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, weakness, slight wing-drop during the first 3 days after single oral administration.

Amizol: see amitrole
Amoben: see chloramben
Amoxone: see 2,4-D

ANILAZINE

Alternative Names: B-622, Direz, Dyrene, Kemate, Triasyn

Chemical Name: 4,6-Dichloro-N-(2-chlorophenyl)-1,3,5-triazin-2-amine (CAS 101-05-3)

Primary Use: Fungicide

Sample Purity: 95.5%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M</td>
<td>3–4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation, ataxia, weakness, falling when walking. The weakness and ataxia persisted from the 1st through the 10th day.

Anofex: see DDT
Anthon: see trichlorfon
4-AP: see Avitrol 200
Aphamite: see parathion
Aphoxide: see tepa
AFO: see tepa
Appex: see tetrachlorvinphos
Aprocarb: see Baygon
Aquadic: see diquat dibromide
Aqua-Kleen: see 2,4-D
Aqualin: see acrolein
Aquathol: see endothall
Aqua-Vex: see silvex
Arasan: see thiram
Arkotine: see DDT

ARMEEN OD

Alternative Names: None found

Chemical Name: Primary aliphatic amine of high molecular weight

Primary Use: Mosquito control agent (pre-imago stage), wetting and dispersing adjuvant, ingredient in 492 Mosquito Larvicide Oil

Sample Purity: Undetermined

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>F</td>
<td>6</td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant</td>
<td>3</td>
<td>M</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Weakness, hyperexcitability, ataxia, tremors; weight loss occurred in mallards. Signs appeared in mallards 1 hour after treatment and persisted up to 11 days. In pheasants, remission had occurred by 5 days after treatment.

Avicol: see PCNB

AVITROL 200

Alternative Name: 4-AP

Chemical Name: 4-Pyridineamine (CAS 504-24-5)

Primary Use: Avian chemical frightening agent

Sample Purity: 95%¹ and 99.9%²

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard¹</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>4.36 (3.36-5.66)</td>
</tr>
<tr>
<td>Mallard²</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>5.19 (4.00-6.73)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Polydipsia, ataxia, stumbling, running and falling, high stance, wing-drop or wings crossed high over back, wing shivers, tremors, rapid nictitating membrane flicker, circling, dyspnea, loss of righting reflex, convulsions and wing-beat convulsions, and tetany. Signs appeared as soon as 10 min and mortalities occurred between 21 and 125 min after treatment. Some survivors displayed signs up to 2 weeks after treatment.

Axiom: see Akton
Azide: see potassium azide

ATRAZINE

Alternative Names: AAtrex, Atratol, ENT 28244, G-30027, Gesaprin, Primatol A

Chemical Name: 6-Chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine (CAS 1912-24-9)

Primary Use: Herbicide

Sample Purity: 80% Wettable powder

AZINPHOS-METHYL

Alternative Names: 17/147, BAY 9027, BAY 17147, Carfene, Crotion-Methyl, DDB, ENT 23233, Gusathion, Gusathion M, Guthion, Methyl Guthion, metiltriazotion, R-1582

Chemical Name: Phosphorodithioic acid, O,O-dimethyl S-
Primary Use: Insecticide

Sample Purity: 90% and 240 g/L formulation

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard¹</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>136 (97.8–188)</td>
</tr>
<tr>
<td>Bobwhite¹</td>
<td>4</td>
<td>M</td>
<td>24</td>
<td>60.0–120</td>
</tr>
<tr>
<td>Pheasant¹</td>
<td>12</td>
<td>M</td>
<td>3–5</td>
<td>74.9 (59.5–94.3)</td>
</tr>
<tr>
<td>Pheasant²</td>
<td>8</td>
<td>M</td>
<td>3–4</td>
<td>283 (200–400)</td>
</tr>
<tr>
<td>Chukar¹</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>84.2 (53.0–134)</td>
</tr>
<tr>
<td>Mule deer¹</td>
<td>2</td>
<td>M</td>
<td>15–16</td>
<td>32.0–64.0</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation, goose-stepping ataxia, withdrawal, lethargy, salivation, tremors, hyporeactivity, anorexia, wing-drop, wing-spasms, tenesmus, diarrhea, myasthenia, dyspnea, prostration, terminal wing-beat convulsions or opisthotonos. Signs appeared as soon as 15 min and mortalities usually occurred between 1 and 22 h after treatment; one mortality, however, occurred 3 days after treatment. Signs persisted up to 1 week.

Other Toxicity Data: The 30-day EMLD of the 90% sample for mallards (n = 18) appears to lie between 4.38 and 8.75 mg/kg per day for both sexes. The resulting cumulative toxicity index is 136/−6.2 = ~ 22, indicating a relatively high degree of cumulative action for azinphos-methyl in mallards.

Note: Based on the amount of active chemical present, the toxicities of the technical grade and the 240 g/L formulation of azinphos-methyl are nearly identical for pheasants.

Azodrin: see monocrotrophos
B-622: see anilazine
B-1776: see DEF

BACILLUS THURINGIENSIS (Berliner)

Alternative Names: Agritol, Bacospeine WP, Bakthane, Biotrol, Biotrol BTB, BTV, Dipel, Larvatroil, Thuricide, Tribactur

Chemical Name: A bacterial toxin in parasporal bodies of *Bacillus thuringiensis* (Berliner), the pure culture containing 25 billion viable spores per gram of product; each milligram of product contains 16,000 International Units of activity

Primary Use: Insecticide

Sample Purity: 50 × 10⁸ Spores per gram

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>F</td>
<td>3–4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: No noticeable effects on appearance, behavior, or body weight at treatment levels up to 2,000 mg/kg.

Bactospeine WP: see *Bacillus thuringiensis* (Berliner)
Bakthane: see *Bacillus thuringiensis* (Berliner)

BALAN

Alternative Names: Balfin, Banafine, benefin (a close analog of trifluralin), Benfluralin, Bethrodine, Binnell, Bulan, Bonalan, Carpidor, EL-110, Quilan

Chemical Name: N-butyl-N-ethyl-2,6-dinitro-4-(tri-fluoromethyl)-benzenamine (CAS 1861-40-1)

Primary Use: Herbicide

Sample Purity: 97.2%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>F</td>
<td>3–4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, weakness, falling. Regurgitation also occurred in the first 2 h after treatment. The other signs occurred 2 to 14 days after treatment. Although no birds died, considerable weight losses had occurred by the end of the 14-day observation period.

Balfin: see Balan
Banafine: see Balan
Barbasco: see rotenone
Basanite: see dinoseb
Basudin: see Diazinon
BAY 13/59: see trichlorfon
BAY 5505: see ethamprophion
BAY 8173: see demeton
BAY 9010: see Baygon
BAY 9027: see azinphos-methyl
BAY 93820

Alternative Name: None found

Chemical Name: 2-[(Aminomethoxyphosphinothiol)oxy] benzoic acid, 1-methylcetyl ester (CAS 24353-61-5)

Primary Use: Insecticide

Sample Purity: 89%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>12</td>
<td>353 (196-637)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation, ataxia, sitting, wing-drop, fear-threat displays, ataxia, fluffed feathers, using wings for pedestrian locomotion, slowness, falling, asthenia, dyspnea, spasms, emprosthenoton-type spasms, ptosis, lacrimation, clonic convulsions, bradypnea, immobility, and emprosthenoton. Signs appeared as soon as 1 h, and mortalities occurred up to 22 h after treatment.

BAY E-605: see parathion
Bayer 73: see clonitralid
Bayer E-601: see methyl parathion

BAYGON

Alternative Names: aprocarb, arprocarb, BAY 9010, BAY 39007, Blattanex, ENT 25671, OMS-33, propoxur, Sendran, Suncide, Tendex, Unden

Chemical Name: 2-(1-Methylethoxy)phenol methylcarbamate (CAS 114-26-1)

Primary Use: Insecticide

Sample Purity: 97%¹ and 98%²

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog</td>
<td>8</td>
<td>M</td>
<td>4-6</td>
<td>11.9 (10.0-14.1)</td>
</tr>
<tr>
<td>Canada goose</td>
<td>20</td>
<td>M,F</td>
<td>4-6</td>
<td>11.9 (10.0-14.1)</td>
</tr>
<tr>
<td>Mallard²</td>
<td>12</td>
<td>F</td>
<td>4-6</td>
<td>9.44 (7.49-11.9)</td>
</tr>
<tr>
<td>Sharp-tailed grouse¹</td>
<td>12</td>
<td>F</td>
<td>12-48</td>
<td>120 (84.8-170)</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>F</td>
<td>3-7</td>
<td>25.9 (14.9-45.0)</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>8</td>
<td>F</td>
<td>20</td>
<td>28.3 (20.0-40.0)</td>
</tr>
<tr>
<td>Pheasant²</td>
<td>8</td>
<td>M</td>
<td>3-5</td>
<td>20.0 (10.0-40.0)</td>
</tr>
</tbody>
</table>

¹ Includes 97% and 98% purity.
² Includes 98% purity.

BAY 98663

Alternative Name: DRC-4575

Chemical Name: Benzencsulfonic acid, [(3-amino-2,4,6-trichlorophenyl)methylene]hydrazide

Primary Use: Experimental rodenticide

Sample Purity: Technical grade
Benzac: see TBA
Benzac 1281: see TBA
Benzahex: see benzene hexachloride
Benzalkonium chloride: see Airkem A-33 Dry

BENZENE HEXACHLORIDE

Alternative Names: 666, Benzahex, Benzex, BHC, DBH, Dol, Dolmix, ENT 8601, FBHC, HCCH, HCH, hexachlor, hexachloran, hexachlorocyclohexane, Hexafor, Hexyclan, Isotox, Lintox, Soprocide

Chemical Name: 1,2,3,4,5,6-Hexachlorocyclohexane (CAS 608-73-1)

Primary Use: Insecticide

Sample Purity: 88 to 90%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg) 95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>15</td>
<td>F</td>
<td>3</td>
<td>≥1,414 (mg/kg)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>118</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Polydipsia, regurgitation, hyperexcitability, ataxia, ptosis, fluffed feathers, hyporeactivity, imbalance, slowness, stumbling, phonation, tenseness, shakiness, jitteriness, sitting, ataxia, withdrawal, tremors, masseter tenseness, spasms, aggressiveness, fear threat displays, backing, circling, asthenia, tongue protruding sideways from the bill (mallards), and immobility. Prolonged signs included falling, sitting, using wings for pedestrian locomotion, ataxia, and withdrawal. Signs appeared as soon as 30 min in mallards and 2 h in pheasants, and mortalities usually occurred between 2 and 5 days in mallards and between 4 and 9 days after treatment in pheasants. Remission took up to 20 days.

Notes: For a discussion of the comparative toxicity of Baygon, see Tucker and Haegele (1971).

For effects of age on the sensitivity of mallards to Baygon, see Hudson et al. (1972).

BAY H-321: see methiocarb
BAY L-13/59: see trichlorfon
Bayluscide: see clonotralid
Baymix: see coumaphos
Baytex: see fenithion
Baythion: see phoxim
BBC 12: see Nemagon
BDH 10131: see mestranol
Belt: see chlordane
Benefin: see Balan
Benfluralin: see Balan
Benzabor: see TBA

Tests of Animal

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg) 95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chukar</td>
<td>12</td>
<td>M,F</td>
<td>4-6</td>
<td>23.8 [20.0-28.3]</td>
</tr>
<tr>
<td>Sandhill crane</td>
<td>14</td>
<td>M,F</td>
<td>-</td>
<td>> 60.0</td>
</tr>
<tr>
<td>Rock dove</td>
<td>20</td>
<td>M,F</td>
<td>-</td>
<td>60.4 (38.0-96.1)</td>
</tr>
<tr>
<td>Mourning dove</td>
<td>8</td>
<td>M,F</td>
<td>-</td>
<td>4.20 (3.54-5.00)</td>
</tr>
<tr>
<td>House sparrow</td>
<td>12</td>
<td>F</td>
<td>-</td>
<td>12.8 (9.26-17.8)</td>
</tr>
<tr>
<td>House finch</td>
<td>12</td>
<td>M,F</td>
<td>A</td>
<td>3.55 (2.25-5.69)</td>
</tr>
<tr>
<td>Dark-eyed junco</td>
<td>8</td>
<td>M</td>
<td>A</td>
<td>4.76 (4.00-5.70)</td>
</tr>
<tr>
<td>Mule deer</td>
<td>2</td>
<td>F</td>
<td>11</td>
<td>100-350</td>
</tr>
<tr>
<td>Domestic goat</td>
<td>4</td>
<td>M</td>
<td>12</td>
<td>> 800</td>
</tr>
</tbody>
</table>

*Except as noted.

Signs of Intoxication: Nutation, lacrimation, ataxia, miosis, lethargy, asynery, imbalance, salivation, hypoactivity, goose-stepping ataxia, falling, tachypnea, dyspnea, fasciculation, ptosis, diarrhea, immobility, tremors, convulsions, wings spread in tetany, and opisthotonos. Depending on the species, signs appeared as soon as 5 min, mortalities occurred between 5 and 45 min or overnight, and remission occurred from 90 min to several days after treatment.

Other Toxicity Data: The 30-day EMLD for pheasants (n = 6) is greater than 6.0 mg/kg per day for both sexes. For mallards (n = 12) the 30-day EMLD is 6.0 mg/kg per day. The resulting cumulative toxicity index for mallards is 11.9/6.0 = 2.0, indicating little or no cumulative action. Mallard and pheasant survivors of the treatment level at 6.0 mg/kg per day showed normal fertility, and their eggs hatched at the same rate as those of controls.

Notes:

For a discussion of the comparative toxicity of Baygon, see Tucker and Haegele (1971).

For effects of age on the sensitivity of mallards to Baygon, see Hudson et al. (1972).

BAY H-321: see methiocarb
BAY L-13/59: see trichlorfon
Bayluscide: see clonotralid
Baymix: see coumaphos
Baytex: see fenithion
Baythion: see phoxim
BBC 12: see Nemagon
BDH 10131: see mestranol
Belt: see chlordane
Benefin: see Balan
Benfluralin: see Balan
Benzabor: see TBA

Benzac: see TBA
Benzac 1281: see TBA
Benzahex: see benzene hexachloride
Benzalkonium chloride: see Airkem A-33 Dry

BENZENE HEXACHLORIDE

Chemical Name: 1,2,3,4,5,6-Hexachlorocyclohexane (CAS 608-73-1)

Primary Use: Insecticide

Sample Purity: 88 to 90%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg) 95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>15</td>
<td>F</td>
<td>3</td>
<td>≥1,414 (mg/kg)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>118</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Polydipsia, regurgitation, hyperexcitability, ataxia, ptosis, fluffed feathers, hyporeactivity, imbalance, slowness, stumbling, phonation, tenseness, shakiness, jitteriness, sitting, ataxia, withdrawal, tremors, masseter tenseness, spasms, aggressiveness, fear threat displays, backing, circling, asthenia, tongue protruding sideways from the bill (mallards), and immobility. Prolonged signs included falling, sitting, using wings for pedestrian locomotion, ataxia, and withdrawal. Signs appeared as soon as 30 min in mallards and 2 h in pheasants, and mortalities usually occurred between 2 and 5 days in mallards and between 4 and 9 days after treatment in pheasants. Remission took up to 20 days.

Notes: Emaciation, enlarged livers, and small spleens were observed on necropsy of mortalities and sacrificed survivors.

Benzex: see benzene hexachloride
Benzofuroline: see resmethrin
Bethrodine: see Balan
BHC: see benzene hexachloride
Bidrin: see dicrotrophos
Binnell: see Balan
BIO-5462: see endosulfan
Bioethanomethrin: see RU 11-679
Bioresmethrin: see resmethrin
BORDEAUX MIXTURE

Alternative Names: None found

Chemical Name: Mixture of copper sulfate solution and suspension of calcium hydroxide

Primary Use: Fungicide

Sample Purity: 12.75% as copper

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M</td>
<td>3-4</td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant</td>
<td>3</td>
<td>M</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Only mild ataxia and wings crossed high over back from 30 min to 1 day after treatment.

Borolin: see picloram
Botran: see di loran
Botrex: see PCNB
Bovinex: see trichlorfon
Brassicol: see PCNB
Bruchlophos: see naled
Bromex: see naled

BROMOPROPYLATE

Alternative Names: Acarol, ENT 27552, GS-19851, Neoron

Chemical Name: 4-Bromo-α-(4-bromophenyl)-α-hydroxy benzeneacetic acid, 1-methylethyl ester (CAS 18181-80-1)

Primary Use: Acaricide

Sample Purity: 97.5%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>10.5</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>88.0</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, dyspnea, wing-drop, tremors, regurgitation, ptosis, and wing-beat convulsions or tetany. Signs appeared as soon as 15 min and mortalities usually occurred between 20 min and 1 h after treatment.

BUFFENCARB

Alternative Names: Bux, ENT 27127, metaflumurate, Ortho 5353, RE-3353

Chemical Name: 3-(1-Ethylpropyl)phenylmethylcarbamate and 3-(1-methybutyl)phenyl methylcarbamate (CAS 8065-36-9)

Primary Use: Insecticide

Sample Purity: 68.9%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>10.5 [8.84-12.5]</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>88.0 (61.6-126)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, dyspnea, wing-drop, tremors, regurgitation, ptosis, and wing-beat convulsions or tetany. Signs appeared as soon as 15 min and mortalities usually occurred between 20 min and 1 h after treatment.

BUTLYLATE

Alternative Names: R-1910, Sutan

Chemical Name: Bis(2-methylpropyl)-carbamothioic acid, S-ethyl ester (CAS 2008-41-5)

Primary Use: Herbicide

Sample Purity: 98%
Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD<sub>50</sub> (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>F</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Wide stance, high carriage, ataxia, imbalance, slowness, stumbling, regurgitation, and goose-stepping ataxia. Signs appeared as soon as 10 min and persisted up to 9 days after treatment.

Bux: see bufencarb
C-12: see C-12 trichlorfon

C-12 TRICHLORFON

Alternative Names: C-12; Dylox derivative; trichlorfon, C-12 derivative

Chemical Name: Phosphonic acid, (2,2,2-trichloro-1-N-dodecanoxyethyl) dimethyl ester

Primary Use: Experimental insecticide

Sample Purity: >99%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD<sub>50</sub> 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>18</td>
<td>M</td>
<td>3</td>
<td>566 (152-2,107)</td>
</tr>
<tr>
<td>Bobwhite</td>
<td>12</td>
<td>M</td>
<td>7</td>
<td>187 (149-236)</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>F</td>
<td>5-7</td>
<td>96.4 (55.4-168)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>24</td>
<td>M</td>
<td>3-5</td>
<td>1,599 (1,210-2,114)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Signs observed in one or more species included polydipsia, regurgitation, high carriage, goose-stepping ataxia, imbalance, ataxia, geotaxia, tremors, falling, sitting, using wings to aid pedestrian locomotion, withdrawal, wing-drop, wings spread, hyporeactivity, ataxia, foamy salivation, dyspnea, lethargy, ptosis, nutrition, bradypnea, convulsions, immobility, loss of righting reflex, and terminal wing-beat convulsions and tetany. Signs generally appeared as soon as 10 min after treatment. Remission took up to 5 or 6 days for several survivors. Mortalities occurred according to 2 patterns—several mortalities occurred rapidly (between 15 min and 3 h); however, many mortalities occurred from several hours to several days after treatment and some as long as 7 and 8 days after treatment.

Notes: C-12 trichlorfon differs from trichlorfon by the addition of a long carbon chain in place of the hydroxyethyl group. Four birds of the same species and sex and approximately the same ages were tested with both trichlorfon and C-12 trichlorfon. The acute oral LD₅₀ for C-12 trichlorfon is 15.4, 16.7, 8.3, and 1.6 times the acute oral LD₅₀ for trichlorfon to mallards, pheasants, bobwhites, and California quail, respectively. Thus, the addition of the carbon chain to trichlorfon substantially decreased the toxicity of that compound to mallards, pheasants, and bobwhites, and appeared to decrease the toxicity of the compound to California quail. See trichlorfon for comparative data.

C-570: see phosphamidon
C-1983: see chloroxuron
C-2059: see fluometuron

C-2307

Alternative Name: ENT 27625

Chemical Name: (E) phosphoric acid, 3-(methoxymethylamino)-1-methyl-3-oxo-1-propenyl dimethyl ester (CAS 25601-84-7)

Primary Use: Insecticide, acaricide

Sample Purity: 75%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD<sub>50</sub> 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>3.86 (2.97-5.00)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>2.37 (1.83-3.08)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Goose-stepping ataxia, regurgitation, polydipsia, miosis, lacrimation, salivation, ataxia, dyspnea, tremors, wing-drop, wing-beat convulsions, and opisthotonos. Signs appeared in less than 10 min and mortalities usually occurred between 15 and 57 min after treatment.

C-6989: see fluorodifen
Calcium hydroxide: see Bordeaux Mixture
Camphechlor: see toxaphene

CAPSULE WALL MATERIAL

Alternative Names: None found
Chemical Name: Poly-amide compound

Primary Use: Encapsulating material for an encapsulated formulation of methyl parathion

Sample Purity: Technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>F</td>
<td>12</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia and shakiness were observed on the day of treatment.

CAPTAN

Alternative Names: Captane, ENT 26538, Merpan, Orthocide, Orthocide 406, SR 406, Vancide 95RE, Vondacaptan

Chemical Name: 3a,4,7,7a-Tetrahydro-2-[(trichloromethyl)thio]-1H-isindo1e-1,3(2H)-dione (CAS 133-06-2)

Primary Use: Fungicide

Sample Purity: 91%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M</td>
<td>3–4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, tremors. Remission took up to 1 week.

Captane: see captan

CARBARYL

Alternative Names: Carin, EN 23969, Hexavin, Karbaspray, Ravyon, Septene, Sevin, Sevin-4-Oil, Tricarnam, UC 7744

Chemical Name: 1-Naphthalenyl methylcarbamate (CAS 63-25-2)

Primary Use: Insecticide

Sample Purity: 50%, 85%, 95%, 480 g/L formulation, 240 g/L formulation, and 98%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog</td>
<td>3</td>
<td>M</td>
<td>–</td>
<td>>4,000</td>
</tr>
<tr>
<td>Canada goose</td>
<td>12</td>
<td>M,F</td>
<td>–</td>
<td>1,790 (1,480–2,180)</td>
</tr>
<tr>
<td>Mallard</td>
<td>4</td>
<td>F</td>
<td>3</td>
<td>>2,564</td>
</tr>
<tr>
<td>Sharp-tailed grouse</td>
<td>10</td>
<td>M,F</td>
<td>–</td>
<td><1,000</td>
</tr>
<tr>
<td>California quail (st)</td>
<td>7</td>
<td>M</td>
<td>10ab</td>
<td>>2,000</td>
</tr>
<tr>
<td>California quail (st)</td>
<td>4</td>
<td>M</td>
<td>10ab</td>
<td>>2,000</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>24</td>
<td>M</td>
<td>2</td>
<td>2,290 (1,740–3,020)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>3</td>
<td>M</td>
<td>3–4</td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant (st)</td>
<td>8</td>
<td>F</td>
<td>3–4</td>
<td>707 (500–1,000)</td>
</tr>
<tr>
<td>Chukar</td>
<td>12</td>
<td>M,F</td>
<td>4</td>
<td>1,888 (1,498–2,378)</td>
</tr>
<tr>
<td>Rock dove</td>
<td>32</td>
<td>M,F</td>
<td>–</td>
<td>1,000–3,000</td>
</tr>
<tr>
<td>Mule deer</td>
<td>2</td>
<td>F</td>
<td>11</td>
<td>200–400</td>
</tr>
</tbody>
</table>

These birds were in the early stages of reproductive gonadal development.

Signs of Intoxication: Signs observed in one or more species included inactivity, ataxia, regurgitation, weakness, fluffed feathers, salivation, slowness, lethargy, tachypnea, tremors, ataxia, tetany, paralysis, coma, and convulsions. Signs appeared as soon as 25 min after treatment. Mortalities occurred from 26 min to 3 days after treatment. Remission typically took up to 1 week, but in one species required up to 12 days.

Other Toxicity Data: The 30-day EMLD for the 85% formulation in mallards of both sexes (n = 12) is about 125 mg/kg per day. Survivors of this 30-day EMLD test reproduced normally. The 30-day EMLD for the 480 g/L formulation in pheasants of both sexes (n = 12) appears to be greater than 350 mg/kg per day. The resulting cumulative toxicity index is 707/ > 350 = 2, indicating little or no cumulative action for Carbaryl in ring-necked pheasants.

Notes: Necropsies of the sacrificed survivors of the 30-day EMLD test in pheasants (480 g/L formulation) revealed several small spleens. When compared with their controls (n = 6, ΔpH/45 min = 1.331, s = 0.029, range = 1.299–1.365), the pheasants that were sacrificed after receiving the dosage of 175 mg/kg per day for 30 days showed a brain cholinesterase inhibition of 1% (n = 6, ΔpH/45 min = 1.318, s = 0.070, range = 1.234–1.401). When compared with their controls (n = 6, ΔpH/45 min
Carbicon: see dicrrotophos
Carbofos: see malathion

CARBOFURAN

Alternative Names: Curaterr, D 1221, ENT 27164, FMC-10242, Furadan, NIA 10242

Chemical Name: 2,3-Dihydro-2,2-dimethyl-7-benzofuranol methylcarbamate (CAS 1563-66-2)

Primary Use: Insecticide, miticide, nematicide

Sample Purity: 98.8%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulvous whistling-duck</td>
<td>8</td>
<td>F</td>
<td>3–6</td>
<td>0.238 (0.200–0.283)</td>
</tr>
<tr>
<td>Mallard</td>
<td>20</td>
<td>M</td>
<td>12<sup>a</sup></td>
<td>0.480 (0.381–0.604)</td>
</tr>
<tr>
<td>Mallard</td>
<td>20</td>
<td>F</td>
<td>12<sup>b</sup></td>
<td>0.510 (0.410–0.635)</td>
</tr>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3–4</td>
<td>0.397 (0.315–0.500)</td>
</tr>
<tr>
<td>Bobwhite</td>
<td>12</td>
<td>F</td>
<td>3</td>
<td>5.04 (3.64–6.99)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3</td>
<td>4.15 (2.38–7.22)</td>
</tr>
</tbody>
</table>

^aThese drakes were either in active breeding condition or had gonads in the early stage of regression.

^bMost of these hens were in active egg-laying condition.

Notes: Acetylcholinesterase activity measurements were made on the brains of the mortalities and sacrificed survivors of the pheasant EMLD determination. When compared with their controls (n = 6, ΔpH/45 min = 1.331, s = 0.029, range = 1.299–1.366), pheasants that had received 2.10 mg/kg per day for 30 days showed 4.9% inhibition (n = 6, ΔpH/45 min = 1.266, s = 0.124, range = 1.025–1.363). When compared with their controls (n = 6, ΔpH/45 min = 1.097, s = 0.068, range = 0.996–1.159), sacrificed survivors that had received 4.20 mg/kg per day for 30 days showed no inhibition (n = 4, ΔpH/45 min = 1.209, s = 0.177, range = 1.065–1.446), whereas mortalities from the treatment level at 4.20 mg/kg per day showed 47.6% inhibition (n = 2, ΔpH/45 min = 0.575, s = 0.016, range = 0.564–0.856).

For data on the effects of age on the sensitivity of mallards to carbofuran, see Hudson et al. (1972).

The 1-year-old mallards reported in the preceding table were in active breeding condition. Thus, it appears that the breeding condition of mallards has little effect on their sensitivity to acute oral administration of carbofuran.

CARBOPHENOTHION

Alternative Names: Dagadip, ENT 23708, Garrathion, R-1303, Stauffer R-1303, Trithion

Chemical Name: Phosphorodithioic acid, S-[[4-chlorophenyl]thio][methyl]O,[O-dieiythyl ester (CAS 786-19-6)

Primary Use: Insecticide, acaricide

Sample Purity: 94.65%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months<sup>a</sup>)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>121 (95.9–152)</td>
</tr>
<tr>
<td>Sharp-tailed grouse</td>
<td>5</td>
<td>M</td>
<td>A</td>
<td>75.6–170</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>269 (194–373)</td>
</tr>
</tbody>
</table>

^aExcept as noted.
Signs of Intoxication: Rubber-legged goose-stepping ataxia, wing-drop; ataxia, imbalance, high carriage, using wings to aid pedestrian locomotion, jitteriness, hyperexcitability, falling, nutation, lacrimation, tremors, immobility with wings spread, convulsions, and dyspnea. Signs appeared as soon as 25 min and mortalities usually occurred between 1 and 3 h or overnight after treatment. Signs persisted up to 34 days in pheasants and 14 days in mallards.

Carfene: see azinphos-methyl
Carin: see carbaryl
Carpidor: see Balan
Casoron: see dichlobenil
Casoron 133: see dichlobenil
CCC: see chlormequat chloride
CD-68: see chlordan
Cekufo: see trichlorfon
Cekusan: see DDVP

CERESAN L

Alternative Names: Granosan (Granosan also refers to Ceresan L, Ceresan M-DB, and Ceresan Red)

Chemical Name: (3-Mercapto-1,2-propanediolato-S) methymercury and (Aceto-O) methylmercury (CAS 8003-37-0)

Primary Use: Seed disinfectant, fungicide

Sample Purity: 2.89% of the first ingredient and 0.62% of the second (2.25% mercury)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulvous whistling-</td>
<td>8</td>
<td>M</td>
<td>3-6</td>
<td>1,680 [1,414-2,000]</td>
</tr>
<tr>
<td>duck (st)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard (st)</td>
<td>6</td>
<td>M</td>
<td>3</td>
<td>>2,000 [841-1,330]</td>
</tr>
<tr>
<td>Bobwhite (st)</td>
<td>12</td>
<td>M</td>
<td>2-3</td>
<td>1,060</td>
</tr>
<tr>
<td>Japanese quail (st)</td>
<td>12</td>
<td>F</td>
<td>4</td>
<td>1,498 [1,190-1,888]</td>
</tr>
<tr>
<td>Pheasant (st)</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>1,190 [1,000-1,414]</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, ataraxia, low carriage, hunching up with feathers fluffed, wing-drop, neck pulled in, blinking, dyspnea, immobility. The mallards showed only ataxia for 3 days following treatment. Mortalities in the pheasants, bobwhites, and fulvous whistling-ducks took 1 to 9 days after single oral administration. This compound acts very slowly and complete recovery from signs among surviving pheasants took up to 21 days.

Other Toxicity Data: The 30-day EMLD for mallards of both sexes (n = 18) is about 30 mg/kg per day. The resulting cumulative toxicity index is >2,000/30 = >66, indicating a high degree of cumulative action for Ceresan L in mallards.

Notes: Surviving Japanese quail that were sacrificed showed enlarged spleens at gross necropsies.

For data on rice seed treated with Ceresan L, see the “Other Toxicity Data” section for aldrin.

See also the “Notes” section for PMA.

CERESAN M

Alternative Names: Granosan (Granosan also refers to Ceresan M, Ceresan M-DB, and Ceresan Red)

Chemical Name: Ethyl (4-methyl-N-phenylenesulfonamidato-N) mercury (CAS-517-16-8)

Primary Use: Seed disinfectant, fungicide

Sample Purity: 7.7% formulation (3.2% mercury)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>18</td>
<td>F</td>
<td>3</td>
<td>2,262</td>
</tr>
<tr>
<td>Mallard duckling</td>
<td>15</td>
<td>M,F</td>
<td>6-8 d</td>
<td>>2,262</td>
</tr>
<tr>
<td>Prairie chicken</td>
<td>12</td>
<td>M,F</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>12</td>
<td>F</td>
<td>2b</td>
<td>668</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>12</td>
<td>360</td>
</tr>
<tr>
<td>Chukar</td>
<td>12</td>
<td>M,F</td>
<td>4</td>
<td>841</td>
</tr>
<tr>
<td>Gray partridge</td>
<td>12</td>
<td>F</td>
<td>9-20</td>
<td>550</td>
</tr>
<tr>
<td>Rock dove</td>
<td>12</td>
<td>M,F</td>
<td></td>
<td>714</td>
</tr>
</tbody>
</table>

*Except as noted.
*Several of these hens were in egg-laying condition.

Signs of Intoxication: Mallards displayed regurgitation, polydipsia, salivation, goose-stepping ataxia, and slow reactions, but no deaths. Other species showed blinking, eyes closed, feathers fluffed, neck pulled in (giving the animal the appearance of a “ball”), anorexia, diminished righting reflex, lethargy, diarrhea, ataxia. Mortalities usually occurred a few days to a few weeks after treatment.
Other Toxicity Data: Pheasant survivors of 30-day exposures to repeated oral treatment at 20 mg/kg per day (n = 3) produced eggs with slightly less hatchability than did controls treated with empty gelatin capsules.

For toxicity data on a mixture of aldrin with Ceresan M see the section on "Other Toxicity Data" for aldrin.

Notes: For information on the effects of Ceresan M on eggshell thickness, see Haegele and Tucker (1974) and Haegele et al. (1974).

See also the “Notes” section for PMA.

CHE 1843

Alternative Names: Preseed, Vancide PA

Chemical Name: (E)-1,1'-bisp-1,2-ethenediybis(sulfonyl)bispropane (CAS 1113-14-0)

Primary Use: Fungicide

Sample Purity: 96%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pheasant</td>
<td>3</td>
<td>F</td>
<td>3</td>
<td>>1,500</td>
</tr>
</tbody>
</table>

Signs of Intoxication: None.

Chlordane: see chlordane

CHLORAMBEN

Alternative Names: ACP M-728, Amchem 66-206, Amiben, Amiben, Vegaben, Vegiben, Verbigen

Chemical Name: 3-amino-2,5-dichloro benzoic acid (CAS 133-90-4)

Primary Use: Herbicide

Sample Purity: 94.86%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pheasant</td>
</tr>
</tbody>
</table>

CHLORDANE

Alternative Names: Aspon, Bel, CD-68, chlordane, Chlor Kil, Corodane, EN 9932, Kypchlor, Niran, Octachlor, Octa-Klor, Ortho-Klor, Synklor, Topiclor 20, Velscicol 1068

Chemical Name: 1,2,4,5,6,7,8,8-Octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H-indene (CAS 57-74-9)

Primary Use: Insecticide

Sample Purity: 100% Active (60% of named compound and 40% related compounds)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
</tr>
</thead>
</table>

Chemagro 1776: see DEF
Chemagro B-1776: see DEF
Chemathion: see malathion
Chem Bam: see nabam
Chem-Hoe: see IPC-400
Chemox General: see dinoseb
Chemox P.E.: see dinoseb
Chem Pels C: see sodium arsenite
Chem-sen: see sodium arsenite
Chem Zineb: see zineb

Chipco Thiram 75: see thiram
Chipco Turf Herbicide “D”: see 2,4-D

Signs of Intoxication: Polydipsia, regurgitation, ataxia, imbalance, slowness, myasthenia, ashenia, disorientation, fluffed feathers, phonation, falling, ataxia, withdrawal, immobility, dyspnia, and tachypnea. Signs appeared as soon as 25 min after treatment. Mortalities occurred as soon as 1 h after treatment, but normally occurred between 12 and 24 h after treatment in mallards and between 5 and 10 days in quail. Remission took up to 30 days.
usually between 1 and 8 days after treatment. Remission took up to 4 weeks in some birds.

Note: The acute oral LD₅₀ reported above for California quail may be the lowest oral LD₅₀ on record for chlor dane in any vertebrate species.

CHLORDECON

Alternative Names: decachlorotetracyclodecanone, ENT 16391, GC-1189, Kepone

Chemical Name: 1,1a,3,3a,4,5,5a,5b,6 Decachlorooctahydro-1,3,4-metheno-2H-cyclobuta[c,d]pentalen-2-one (CAS 143-50-0)

Primary Use: Insecticide, fungicide

Sample Purity: 93.1%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD₅₀ 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>167 (120-231)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Jerky gait, gait, intermittent tremors, use of the wings to aid locomotion, immobility, and myasthenia. Signs appeared within 1 h and mortalities occurred usually between 1 and 8 days after treatment. Remission took up to 35 days.

Other Toxicity Data: Chlordecone caused no significant eggshell thinning in tests with mallards. For a discussion of this study, see Haegle and Tucker (1974).

CHLORFENVINPHOS

Alternative Names: Birlane, Compound 4072, ENT 24969, Sapecon, SD 7859, Supona

Chemical Name: Phosphoric acid, 2-chloro-1-(2,4-dichlo rophenyl)ethenyl diethyl ester (CAS 470-90-6)

Primary Use: Insecticide

Sample Purity: 91% β, 8% α isomers

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD₅₀ 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>85.5 (44.5-164)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, miosis, falling, sitting, using wings for pedestrian locomotion, tremors, tetanic seizures, immobility, opisthotonos, and frequent spasms. Signs appeared as soon as 5 min and mortalities usually occurred between 15 and 40 min after treatment. Remission took up to 3 days.

Chlorocholine chloride: see chlorimequat chloride

CHLORIMEQUAT CHLORIDE

Alternative Names: CCC, chlorimequat, chlorocholine chloride, Cyocel

Chemical Name: 2-Chloro-N,N,N-trimethylethanaminium chloride (CAS 999-81-5)

Primary Use: Plant growth regulator

Sample Purity: 98%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD₅₀ 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>265 (211-334)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Goose-stepping ataxia, wing-drop or wings crossed high over the back, wing shivers, ataxia, ataraxia, fluffed feathers, high stance, nutation, tenseness, falling when walking, lacrimation, dyspnea, tremors, and terminal wing-beat convulsions and tetany. Signs appeared as soon as 3 min and mortalities usually occurred between 40 and 70 min after treatment. Remission took up to 3 weeks. Mallards had generally lost small but abnormal amounts of body weight by the end of the extended observation period.

Note: Gross necropsies of sacrificed mallard survivors revealed one of each of the following abnormalities: distended gall bladder, blister on Glisson's capsule on the liver, hemorrhagic ovaries, and enlarged flaccid heart.

Chlorinated biphenyls: see polychlorinated biphenyls

Chlorinated camphene: see toxaphene

Chlor KII: see chlor dane

Chloromequat: see chlorimequat chloride
CHLOROXURON

Alternative Names: C-1983, chloroxifenidim, Norex, Tenoran

Chemical Name: N-(4-(4-chlorophenoxy)phenyl)-N,N-dimethyl urea (CAS 1982-47-4)

Primary Use: Herbicide

Sample Purity: 50% Wettable powder

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard duckling</td>
<td>9</td>
<td>M,F</td>
<td>15-19</td>
<td>112 (11.5-1089)</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>M</td>
<td>5-7</td>
<td>68.3 (40.7-115)</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>12</td>
<td>M</td>
<td>2.5</td>
<td>15.9 (10.5-24.0)</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>12</td>
<td>M</td>
<td>2</td>
<td>17.8 (15.0-21.2)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>4-12</td>
<td>8.41 (2.77-25.5)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>16</td>
<td>F</td>
<td>3-5</td>
<td>17.7 (12.5-25.0)</td>
</tr>
<tr>
<td>Chukar</td>
<td>24</td>
<td>M</td>
<td>3-5</td>
<td>61.1 (47.5-78.6)</td>
</tr>
<tr>
<td>Chukar</td>
<td>16</td>
<td>F</td>
<td>3-5</td>
<td>60.7 (43.8-84.1)</td>
</tr>
<tr>
<td>Sandhill crane</td>
<td>3</td>
<td>M</td>
<td>25-50</td>
<td></td>
</tr>
<tr>
<td>Rock dove (st)</td>
<td>16</td>
<td>M,F</td>
<td>26.9 (19.0-38.1)</td>
<td></td>
</tr>
<tr>
<td>House sparrow</td>
<td>20</td>
<td>M</td>
<td>21.0 (5.59-79.1)</td>
<td></td>
</tr>
<tr>
<td>Albino rat (st)</td>
<td>12</td>
<td>M</td>
<td>151 (179-252)</td>
<td></td>
</tr>
<tr>
<td>Domestic goat</td>
<td>2</td>
<td>F</td>
<td>500-1000</td>
<td></td>
</tr>
</tbody>
</table>

*Except as noted.

Signs of Intoxication: Ataxia, weakness, sideways walking, falling. Signs were not apparent until the third day after single oral administration, then persisted for up to 14 days.

CHLORPYRIFOS

Alternative Names: Dowco 179, Dursban, ENT 27311, Lorsban, Trichlorpyrphos

Chemical Name: Phosphorothioic acid, O,O-diethyl O-(3, 5,6-trichloro-2-pyridinyl) ester (CAS 2921-88-2)

Primary Use: Insecticide

Sample Purity: 94.5%¹ and 99%²

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog</td>
<td>2</td>
<td>M</td>
<td>4-8</td>
<td>>400</td>
</tr>
<tr>
<td>Canada goose</td>
<td>3</td>
<td>M,F</td>
<td>40-80</td>
<td>75.6 (35.4-161)</td>
</tr>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>75.6 (35.4-161)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Numerous gross pathological changes were seen at necropsy in tissues of sacrificed survivors. For most species, the slope of the acute dose-response curve was low (decreasing dosage levels did not produce proportional decreases in the response). This finding would indicate a reduced safety margin for the chemical because mortalities frequently occurred at levels much lower than the calculated LD50's.

For a discussion of the comparative toxicity of chlorpyrifs, see Tucker and Haegle (1971).

For a discussion of the effects of age on the sensitivity of mallards to chlorpyrifs, see Hudson et al. (1972).
Chlorthiepin: see endosulfan
Chrysanthemum cinerariifolium: see pyrethrum
Chryson: see resmethrin
CIBA 709: see dicopropham
CIBA 1414: see monocrotophos
Cijodrin: see crotoloxhos

CIPC

Alternative Names: Chloro-IPC, chloropropham, chloropropham, Furlo, Sprout Nip, Spud-Nic, Taterpex, Triherbicide-CIPC, Y-3

Chemical Name: (3-Chlorophenyl)-carbamic acid, 1-methyl-ethyl ester (CAS 101-21-3)

Primary Use: Herbicide

Sample Purity: ≥ 99%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>6</td>
<td>F</td>
<td>3-4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, use of wings to aid in locomotion from the 5th to 8th day after administration.

Cismethrin: see resmethrin
CL 38023: see famphur
CL 47031: see Cylane
CL 47676: see Starlicide

CLONITRALID

Alternative Names: BAY 25648, Bayer 73, Bayluscide, M73, Molluscicide Bayer 73, SR 73, Yomesan

Chemical Name: 5-Chloro-N-(2-chloro-4-nitrophenyl)-2-hydroxy benzamide compd. with 2-aminoethanol (1:1) (CAS 1420-04-8)

Primary Use: Lampricide, piscicide, molluscicide

Sample Purity: 70%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months*1)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard (MM)</td>
<td>24</td>
<td>F</td>
<td>A</td>
<td>>2,000</td>
</tr>
<tr>
<td>Bobwhite (HG)</td>
<td>24</td>
<td>M</td>
<td>4-6</td>
<td>>2,000</td>
</tr>
<tr>
<td>Ring-billed gull</td>
<td>12</td>
<td>F</td>
<td>A</td>
<td>500</td>
</tr>
</tbody>
</table>

*1Except as noted.

COUMAPHOS

Alternative Names: Agripip, Asolute, BAY 21199, Baymix, Co-Ral, ENT 17957, Meldane, Musectox, Resistox, Restox

Chemical Name: Phosphorothioic acid, O-(3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-yi) O,O-diethyl ester (CAS 56-72-4)

Primary Use: Insecticide

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>29.8</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>7.94</td>
</tr>
</tbody>
</table>

(21.5-41.3)
CROTOXYPHOS

Alternative Names: Ciodrin, ENT 24717, SD 4294

Chemical Name: (E)-3-[(Dimethoxyphosphinyl)oxy]-2-butenolic acid, 1-phenylethyl ester (CAS 7700-17-6)

Primary Use: Insecticide

Sample Purity: 85%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>790 (411-1,520)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, leg weakness, wings crossed high over back, opisthotonos. Most mortalities occurred about 1 h after administration.

CYANAZINE

Alternative Names: Bladex, DW 3418, Payze, SD 15418, WL 19805

Chemical Name: 2-[[4-Chloro-6-(ethylamino)-s-triazin-2-yl]amino]-2-methylpropanenitrile (CAS 21725-46-2)

Primary Use: Herbicide

Sample Purity: >95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>9</td>
<td>F</td>
<td>3-5</td>
<td>>2,400</td>
</tr>
<tr>
<td>Bobwhite</td>
<td>9</td>
<td>F</td>
<td>3</td>
<td>445 (281-707)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Loss of balance, goose-stepping ataxia, fluffed feathers, wing shivers, wings crossed high over back, falling when walking, tremors. Remission took up to 2 to 4 weeks after treatment. Although no mallard mortalities occurred at levels below 2,400 mg/kg, as little as 150 mg/kg produced signs.

Note: Regurgitation of part of the dosage given, the low dosage that produced toxic signs, and the prolonged recovery period may be indications that the acute toxicity of this material is greater than the LD50 indicates and its toxic action on mallards might be cumulative.

CYCLOHEXIMIDE

Alternative Names: Acti-Aid, Actidione, Actispray, ENT 15541, naramycin A
Chemical Name: 4-[2-(3,5-Dimethyl-2-oxocyclohexyl)-2-hydroxyethyl]-2,6-piperidinedione (CAS 66-81-9)

Primary Use: Fungicide, growth regulator (abscission agent)

Sample Purity: 88.7%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>82.5 (54.3-126)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>4</td>
<td>9.38 (6.91-12.7)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Goose-stepping ataxia, polydipsia (in mallards), regurgitation (in mallards), ataxia, imbalance, wing-drop, wings crossed over the back, wing shivers, tremors, slowness, hypoactivity, periodic falling, ataxia, prostration. Signs appeared as soon as 10 min and mortalities usually occurred overnight after treatment. Remission took up to 1 week.

Note: Necropsies frequently revealed congestion of various organs.

Cyccocel: see chlormequat chloride
Cygon: see dimethoate
Cynem: see thionazin

CYOLANE

Alternative Names: AC-47031, American Cyanamid 43064, CL 47031, E. I. 47031, ENT 25809, phosfolan (proposed).

Chemical Name: Phosphoramidic acid, 1,3-dithiolan-2-ylidene, diethyl ester (CAS 947-02-4)

Primary Use: Insecticide

Sample Purity: 85.9%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>9</td>
<td>M</td>
<td>4</td>
<td>>2,000</td>
</tr>
<tr>
<td>Mallard</td>
<td>5</td>
<td>M</td>
<td>3-5</td>
<td>>2,025</td>
</tr>
<tr>
<td>Mallard</td>
<td>1</td>
<td>M</td>
<td>7</td>
<td><2,000</td>
</tr>
<tr>
<td>Mallard</td>
<td>2</td>
<td>F</td>
<td>3-5</td>
<td>>1,000</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>12</td>
<td>M</td>
<td>2</td>
<td>668 (530-842)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>472 (340-654)</td>
</tr>
<tr>
<td>Chukar</td>
<td>4</td>
<td>M,F</td>
<td>4</td>
<td>200-400</td>
</tr>
<tr>
<td>Rock dove</td>
<td>12</td>
<td>M,F</td>
<td></td>
<td>668 (530-842)</td>
</tr>
<tr>
<td>Mule deer</td>
<td>3</td>
<td>M,F</td>
<td>8-11</td>
<td>400-800</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Polydipsia, ataxia, imbalance, slowness, fluffed feathers, tachypnea, tremors, prostration, ptosis, salivation.

Other Toxicity Data: The acid was orally administered to 2 mule deer does daily for 30 days. One survived 80 mg/kg per day and the other 240 mg/kg per day; they showed only slight toxic effects, but no weight loss. Combinations of 1,000 mg/kg 2,4-D amine and 1,000 mg/kg 2,4-D acid were lethal to 99.9% of mule deer at 1 mg/kg per day.
Tordon 22K or 2,000 mg/kg of each, administered by stomach tube, were not lethal to two maller drakes.

Notes: Gastrointestinal and endocardial hemorrhages were seen at necropsy.

For 2,4-D effects on eggshell thickness, see Haegle and Tucker (1974).

D 1221: see carbofuran
Dacamine: see 2,4-D; 2,4,5-T
Dagadin: see carbophenothion Dal: see methyl parathion
Dalmatian Insect Flowers: see pyrethrum
Danex: see trichlorfon
Daphene: see dimethoate
Dasanit: see fensulfothion
Dazzle: see Diazinon
DBCP: see Nemagon
DBD: see azinphos-methyl
DBH: see benzene hexachloride
2,6-DBN: see dichlobenil
DCMU: see diuron
DCNA: see dicloran
DDD: see TDE

DDT

Alternative Names: Anofex, Arkotine, chlorophenothane, Dedelo, dichlorodiphenyltrichloroethane, Dicophane, Didimac, DND, ENT 1506, Genito, Gesapon, Gesarex, Gesarol, Guesapon, Guesarol, Gyron, Ixodex, Kopsol, Neocid, Pentachlorin, p,p'-DDT, Rukseam, Zerdane

Chemical Name: 1,1'-((2,2,2-Trichloroethylidene)bis[4-chlorobenzene]) (CAS 50-29-3)

Primary Use: Insecticide

Sample Purity: >99% (set point, 105.4°C), 77.2%, technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog</td>
<td>3</td>
<td>F</td>
<td>-</td>
<td>>2,000</td>
</tr>
<tr>
<td>Mallard</td>
<td>8</td>
<td>F</td>
<td>3</td>
<td>>2,240</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>M</td>
<td>6</td>
<td>595</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>12</td>
<td>M</td>
<td>2</td>
<td>841</td>
</tr>
<tr>
<td>Pheasant</td>
<td>15</td>
<td>F</td>
<td>3-4</td>
<td>1,334 (894-1,990)</td>
</tr>
<tr>
<td>Sandhill crane</td>
<td>5</td>
<td>M,F</td>
<td>A</td>
<td>>1,200</td>
</tr>
<tr>
<td>Rock dove</td>
<td>20</td>
<td>M,F</td>
<td>-</td>
<td>>4,000</td>
</tr>
</tbody>
</table>

*Except as noted.

Signs of Intoxication: Ataxia, wing-drop, jerkiness in gait, continuous whole-body tremors, falling, convulsions. Mortalities usually occurred from 1 to 2 days after single oral administration.

Other Toxicity Data: The acute tests reported above were based on DDT administered orally in gelatin capsules. However, DDT in corn oil was given by stomach tube to another group of cranes and was not lethal at 1,200 mg/kg, the highest level tested.

The 30-day EMLD² for male or female mallards (n = 6) is 50 mg/kg per day. The resulting cumulative toxicity index for mallards is >2,240/50 = >44.8, indicating a high degree of cumulative action.

A single female adult sandhill crane given 1,000 mg/kg per day¹ showed toxic signs by the 10th day and died after 12 dosages.

Adult mallards were fed 100 ppm DDT in the diet. The first mortality occurred at 43 days and the last at 417 days after treatment began. Median lethal time was about 1 year.

In a 90-day feeding study doses of 30 ppm were not lethal to mallards or bobwhites of either sex. Two California quail cocks, 1 bobwhite cock, and 1 bobwhite hen survived a 60-day feeding exposure to 100 ppm technical grade³ DDT; no signs of intoxication were observed, and eggshell thickness appeared to be normal.

Notes: DDT is more readily absorbed from materials with a high lipid content.

One of the primary metabolites of DDT is DDE [2,2-bis (p-chlorophenyl)-1,1-dichloroethylene], a widespread environmental contaminant. It has been shown to cause eggshell thinning in several species of birds. For information on eggshell thinning and other reproductive effects in birds caused by DDT and DDE, see Haegle et al. (1974), Haegle and Tucker (1974), and Haegle and Hudson (1973, 1974, 1977).

DDVP: see DDVP

DDVP

Alternative Names: Cekusan, DDVF, Dedevap, dichlorophos, dichlorvos, Divipan, ENT 20738, Herkol, Mafu, Marvex, Nogos, No-Pest, Nuvan, Oko, Phosvlt, Vapona

Chemical Name: Phosphonic acid, 2,2-Dichloroethylidene dimethyl ester (CAS 62-73-7)

Primary Use: Insecticide

Sample Purity: 93%
Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>5-7</td>
<td>7.78 (6.00-10.1)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>11.3 (8.99-14.3)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Goose-stepping ataxia, use of wings to aid in balance, tremors, convulsions.

Note: Various internal hemorrhages were found at necropsy in sacrificed survivors of both species.

Decachlorotetracyclodecanone: see chlordecone
Declorane: see mirex
Dedelo: see DDT
Dedevap: see DDVP
Ded-Weed: see 2,4-D; silvex
Ded-Weed Brush Killer: see 2,4,5-T

DEF

Alternative Names: B-1776, Chemagro 1776, Chemagro B-1776, De-Green, E-Z-Off D, Fos-Fall "A," Ortho Phosphate Defoliant, tributyl phosphorothioate

Chemical Name: Phosphorothioic acid, S,S,S-tributyl ester (CAS 78-48-8)

Primary Use: Defoliant

Sample Purity: 92%1 and 99%2

Demeton

Alternative Names: BAY 8173, BAY 10756, demeton O + demeton S, Demox, E-1059, ENT 17295, ISO-Systox, mercaptooctyl, mercaptophos, Systemox, Systox

Chemical Name: Phosphorothioic acid, O,O-diethyl O-[2-(ethylthio)ethyl] ester; and O,O-diethyl S-[2-(ethylthio)ethyl] phosphorothioate (CAS 8060-40-3)

Primary Use: Insecticide, acaricide

Sample Purity: 92%1 and 99%2

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog1</td>
<td>8</td>
<td>M</td>
<td>–</td>
<td>562 (178-1780)</td>
</tr>
<tr>
<td>Mallard2</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>7.19 (5.19-9.97)</td>
</tr>
<tr>
<td>Sharp-tailed grousie</td>
<td>8</td>
<td>M,F</td>
<td>A</td>
<td>4.76 (4.00-5.66)</td>
</tr>
<tr>
<td>California quail1</td>
<td>12</td>
<td>M</td>
<td>6</td>
<td>10.6 (8.41-13.4)</td>
</tr>
<tr>
<td>Japanese quail1</td>
<td>12</td>
<td>F</td>
<td>2b</td>
<td>8.48 (6.73-10.7)</td>
</tr>
<tr>
<td>Pheasant2</td>
<td>12</td>
<td>F</td>
<td>2</td>
<td>8.21 (5.69-11.9)</td>
</tr>
<tr>
<td>Chukar1</td>
<td>12</td>
<td>M,F</td>
<td>3</td>
<td>15.1 (12.0-19.0)</td>
</tr>
<tr>
<td>Rock dove1</td>
<td>12</td>
<td>M,F</td>
<td>–</td>
<td>8.48 (6.73-10.7)</td>
</tr>
<tr>
<td>House sparrow1</td>
<td>12</td>
<td>F</td>
<td>–</td>
<td>9.52 (6.87-13.2)</td>
</tr>
<tr>
<td>House finch1</td>
<td>6</td>
<td>F</td>
<td>–</td>
<td>2.38 (2.00-2.83)</td>
</tr>
<tr>
<td>Mule deer1</td>
<td>1</td>
<td>F</td>
<td>A</td>
<td><10.0</td>
</tr>
<tr>
<td>Domestic goat1</td>
<td>4</td>
<td>M,F</td>
<td>–</td>
<td>8.00-18.0</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Jerkiness, neck-stretching, lacrimation, limited regurgitation (in mallards), slowness, wingdrop, fluffed feathers, and greatly prolonged ataxia. Signs appeared as soon as 1 h and mortalities usually occurred between 1 and 4 days after treatment. Remission took up to 30 days.

Note: Although the LD50 for mallards is 2,934 mg/kg, some mortalities occurred at treatment levels as low as 800 mg/kg, and treatment levels as low as 200 mg/kg produced signs of intoxication.

Demeton

Signs of Intoxication: Polydipsia, weakness, goose-stepping ataxia, lacrimation, salivation, tremors, tachypnea, dyspnea, prostration, convulsions with miosis and apnea, tetany or opisthotonos. Signs appeared as soon as 6 min after treatment and mortalities usually occurred in 1 to 3 h. Remarkable uniformity in signs and timing among species was noted. Remission took up to 1 day for
Other Toxicity Data: The 30-day EMLD for mallards is 2.5–5.0 mg/kg per day for both sexes (n = 12). The resulting cumulative toxicity index is 7.19/2.5–5.0 = 1.4–2.9, indicating little cumulative action for mallards.

The calculated percutaneous LD50 for 10-month-old mallard drakes (n = 8) after a 24-h dermal foot exposure is 24.0 (CL 6.00–96.0) mg/kg. Signs observed after percutaneous treatment included, in addition to several of the above, running and falling, hyporeactivity, myasthenia, slowness, ataxia, asthenia, and sitting. Signs appeared as soon as 1 h and mortalities usually occurred from 5 to 20.5 h after the initiation of treatment; however, one mortality occurred between 6 and 7 days after treatment. Mild dermal irritation occurred after percutaneous exposure to demeton. Dead mallards exhibited penile extrusion. When the percutaneous LD50 is compared with the acute oral LD50, demeton appears to have a moderate degree of dermal hazard in mallards.

Notes: For a discussion of the comparative toxicity of demeton, see Tucker and Haegele (1971).

For a discussion of the effects of age on the sensitivity of mallards to demeton, see Hudson et al. (1972).

For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

Sample Purity: 89%

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog</td>
<td>4</td>
<td>F</td>
<td>-</td>
<td>>2,000</td>
</tr>
<tr>
<td>Mallard</td>
<td>16</td>
<td>M</td>
<td>3–4</td>
<td>3.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.37–5.27)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>4.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3.02–6.22)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Goose-stepping ataxia, wing spasms, wing-drop, hunched back, dyspnea, tenesmus, diarrhea, salivation, lacrimation, ptosis, prostration, opisthotonos-like seizures or wing-beat convulsions.

Diazol: see Diazinon
Dibrom: see naled
Dibromochloropropane: see Nemagon

DICHLOBENIL

Alternative Names: Casoron, Casoron 133, 2,6-DBN, Du-Sprex, ENT 26665, NIA 5996

Chemical Name: 2,6-Dichlorobenzonitrile (CAS 1194-65-6)

Primary Use: Herbicide

Sample Purity: 98.7%

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>9</td>
<td>F</td>
<td>3</td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant</td>
<td>9</td>
<td>M</td>
<td>8–9</td>
<td>1,189</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(446–3,165)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: In both species ataxia and fluffed feathers with the neck pulled in were typical at levels as low as 500 mg/kg. Birds tended to stand in place for prolonged periods with the eyes closed. Mortalities typically occurred 10 to 16 days after single oral administration. Survivors suffered extreme weight losses in the first few weeks after treatment.

Note: Hemorrhaging of the intestinal mucous membrane was noted at necropsy.

DIAZINON

Alternative Names: AG-500, Alfa-tox, Basudin, Dazzel, Diazajet, Diazide, Diazol, ENT 19507, G-24480, Garden-tox, Neocide, Nicidol, Sarolex, Spectracide

Chemical Name: Phosphorothioic acid, O,O-diethyl O-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester (CAS 333-41-5)

Primary Use: Insecticide, nematocide

DICHLONE

Alternative Names: Compound 604, ENT 3776, Phygon, Phygon XL, Phygon Seed Protectant
Chemical Name: 2,3-Dichloro-1,4-naphthalenedione (CAS 117-80-6)

Primary Use: Fungicide

Sample Purity: 90%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>7</td>
<td>M</td>
<td>3–4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation, ataxia, falling under stress. Signs lasted up to 19 days, and some birds lost weight.

DICLORAN

Alternative Names: AL-50, Allisan, Botran, DCNA, Dichloran, ditanil, U-2069

Chemical Name: 2,6-Dichloro-4-nitrobenzenamine (CAS 99-30-9)

Primary Use: Fungicide

Sample Purity: 97%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>6</td>
<td>F</td>
<td>3–4</td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant</td>
<td>6</td>
<td>F</td>
<td>3–4</td>
<td>500–1,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation, ataxia, asthenia, imbalance, slowness, wingdrop, falling when walking, withdrawal, and ataxia. Regurgitation occurred as soon as 20 min; other signs appeared as soon as 1.5 h after treatment in mallards. In pheasants, signs appeared the day after treatment, and mortalities occurred between 2 and 4 days after treatment. Remission took up to 5 weeks for both species.

DICOFOL

Alternative Names: Acarin, DTMC, ENT 23648, FW-293, Kelthane, Mitilan, R and H FW-293

Chemical Name: 4-Chloro-α-(4-chlorophenyl)-α-(trichloromethyl)benzenemethanol (CAS 115-32-2)

Primary Use: Acaricide

Sample Purity: 87.8%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>4</td>
<td>265 (211–334)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Imbalance, ptosis, ataxia, flushed feathers, low carriage, tremors, wing-beat convulsions, and emprosthotonos. Signs appeared on the day following treatment and mortalities usually occurred between 1 and 8 days after treatment. Remission took up to 1 week.

Dicrophane: see DDT

DICROTYPHOS

Alternative Names: Bidrin, Carbicron, Ciba 709, Ektatos ENT 24482, SD 3562

Chemical Name: (E)-Phosphoric acid, 3-(dimethylamino)-1-methyl-3-oxo-1-propenyl dimethyl ester (CAS 141-66-2)

Primary Use: Insecticide

Sample Purity: 98% α Isomer¹ and 80%²

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog¹</td>
<td>8</td>
<td>M</td>
<td>—</td>
<td>2,000 (602–6,640)</td>
</tr>
<tr>
<td>Canada goose¹</td>
<td>12</td>
<td>M,F</td>
<td>—</td>
<td>2.28 (1.36–3.83)</td>
</tr>
<tr>
<td>Mallard¹</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>4.24 (3.06–5.88)</td>
</tr>
<tr>
<td>Sharp-tailed grous³</td>
<td>12</td>
<td>M</td>
<td>24–36</td>
<td>2.31 (1.78–3.00)</td>
</tr>
<tr>
<td>California quail²</td>
<td>12</td>
<td>M</td>
<td>18</td>
<td>1.89 (1.50–2.38)</td>
</tr>
<tr>
<td>Japanese quail²</td>
<td>12</td>
<td>M</td>
<td>2.5</td>
<td>4.32 (3.18–5.86)</td>
</tr>
<tr>
<td>Pheasant³</td>
<td>12</td>
<td>M</td>
<td>2</td>
<td>3.21 (2.45–4.21)</td>
</tr>
<tr>
<td>Chukar¹</td>
<td>12</td>
<td>M,F</td>
<td>12–24</td>
<td>9.63 (7.35–12.9)</td>
</tr>
<tr>
<td>Test animal</td>
<td>No.</td>
<td>Sex</td>
<td>Age (months)</td>
<td>LD50 95%CL (mg/kg)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
<td>-----</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Rock dove†</td>
<td>16</td>
<td>M,F</td>
<td>—</td>
<td>2.00 (1.53-2.61)</td>
</tr>
<tr>
<td>House sparrow†</td>
<td>16</td>
<td>M</td>
<td>—</td>
<td>3.00 (1.59-5.64)</td>
</tr>
<tr>
<td>House finch†</td>
<td>8</td>
<td>M,F</td>
<td>—</td>
<td>2.83 (1.06-7.54)</td>
</tr>
<tr>
<td>Mule deer†</td>
<td>3</td>
<td>M</td>
<td>8-17</td>
<td>12.5-25.0</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Goose-stepping ataxia, asthenia, miosis, salivation, lacrimation, diarrhea, tachypnea, anorexia, prostration, tetany with wings outstretched, convulsions. As little as one-tenth of a lethal dose produced signs.

Other Toxicity Data: The 30-day EMLD† for mallards (n = 12) is about 0.25 mg/kg per day for both sexes. The resulting cumulative toxicity index is 4.2/−0.25 = −17, indicating moderately high cumulative toxicity.

One mule deer buck that received 0.75 mg/kg per day (80%) orally for 30 days displayed only tremors and salivation. Another buck received 3.00 mg/kg per day (80%) orally for 7 days and died.

The calculated percutaneous LD50† for 1-year-old mallard drakes (n = 12) after a 24-h dermal foot exposure is 14.2 (CL 4.56-43.8) mg/kg. Signs observed after percutaneous treatment included, in addition to several of the above, nasal exudate, mydriasis, ataxia, tremors, falling, using wings to aid pedestrian locomotion, and immobility. Mortalities occurred between 3 and 24 h after the initiation of treatment, and remission took up to 3 days after exposure ended. When the percutaneous LD50 is compared with the acute oral LD50, dicrotophos appears to have a moderate degree of dermal hazard in mallards.

Notes: For a discussion of the comparative toxicity of dicrotophos, see Tucker and Haegele (1971).

For a discussion of the effects of age on the sensitivity of mallards to dicrotophos, see Hudson et al. (1972).

For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

Primary Use: Insecticide

Sample Purity: 100% (85% HEOD)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada goose</td>
<td>14</td>
<td>M,F</td>
<td>A</td>
<td><141.</td>
</tr>
<tr>
<td>Fulvous whistling duck</td>
<td>2</td>
<td>F</td>
<td>—</td>
<td>100-200.</td>
</tr>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>6-7</td>
<td>381</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>M</td>
<td>7</td>
<td>(141-1,030)</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>12</td>
<td>M</td>
<td>2</td>
<td>8.78</td>
</tr>
<tr>
<td>Pheasant</td>
<td>9</td>
<td>M</td>
<td>10-23</td>
<td>(6.47-11.9)</td>
</tr>
<tr>
<td>Chukar</td>
<td>9</td>
<td>M,F</td>
<td>8-11</td>
<td>25.3</td>
</tr>
<tr>
<td>Gray partridge</td>
<td>6</td>
<td>F</td>
<td>3-10</td>
<td>(15.2-42.2)</td>
</tr>
<tr>
<td>Rock dove</td>
<td>15</td>
<td>M,F</td>
<td>—</td>
<td>8.84</td>
</tr>
<tr>
<td>House sparrow</td>
<td>12</td>
<td>F</td>
<td>—</td>
<td>(1.24-62.8)</td>
</tr>
<tr>
<td>Mule deer</td>
<td>2</td>
<td>M</td>
<td>8-18</td>
<td>26.6</td>
</tr>
<tr>
<td>Domestic goat</td>
<td>3</td>
<td>M</td>
<td>6-8</td>
<td>(19.2-36.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(34.3-66.0)</td>
</tr>
</tbody>
</table>

†Except as noted.

†These birds may have been in active breeding condition.

Signs of Intoxication: Tail feathers spread and pointed either upward or downward, hyperexcitability, jerkiness in gait, ataxia, dyspnea, myasthenia, fluffed feathers, immobility, terminal wing-beat convulsions or opisthotonos. Mortalities usually occurred 1 to 9 days following treatment.

Other Toxicity Data: The 30-day EMLD for mallards (n = 6) is 5.0 mg/kg per day for both sexes. The resulting cumulative toxicity index is 381/5 = 76 for mallards, indicating a high degree of cumulative action.

An approximation of the 30-day EMLD for fulvous whistling-ducks (n = 3) is about 2.5; for gray partridges (n = 2) it appears to be between 1.25 and 5.00 mg/kg per day.

In 60-day feeding tests, 2.5 ppm was not lethal to a male gray partridge nor a male fulvous whistling-duck.

The 8-day dietary LC50 for mallard ducklings (MM—15 days old at the start of treatment) is 91.0 (CL 70.3-118) ppm. The 8-day dietary LC50 for bobwhite chicks (HGF—11 to 13 days old) is 31.8 (CL 26.7-37.8) ppm. Consumption of the treated diets was less than normal, and weight gains in survivors were depressed.

Dieldrin did not cause eggshell thinning in studies with mallards and coturnix (Haegele and Tucker 1974).

DIELDRIN

Alternative Names: Alvite, Compound 497, Dieldrite, ENT 16225, HEOD, Octalox, Panoram D-31

Chemical Name: 3,4,5,6,9,9-Hexachloro-1a,2,2a,3,6,6a,7, 7a-octahydro-2,7,3,6-dimethanaphthal[2,3-b]oxirene, (1aα,2β,2aα,3β,6β,6αα,7β,7αα) (CAS 60-57-1)
Note: For a discussion of the comparative toxicity of dieldrin, see Tucker and Håggele (1971).

Dieldrine: see dieldrin

DIESEL OIL #1

Alternative Names: None found
Chemical Name: A petroleum fraction
Primary Use: Adjuvant, pesticide carrier, fuel
Sample Purity: Technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mL/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>5</td>
<td>M,F</td>
<td>>12</td>
<td>>20</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Transient weakness, diarrhea, and regurgitation.

Note: The LD50 of 20 mL/kg is far more than any mallard is likely to encounter in normal pesticide applications.

Diethion: see ethion
Diethyl ethylthioethyl dithiophosphate: see disulfoton
Difenfos: see temephos
Diflubenzuron: see difluuron

DIFLUROX

Alternative Names: desflubenzon, diflubenzuron, Dimilin, DU 112307, ENT 29054, Largon, OMS 1804, Pn 60-40, TH-6040

Chemical Name: N-[(4-chlorophenyl)amino][carbonyl]-2,6-difluorobenzamide (CAS 35367-38-5)

Primary Use: Insecticide (interferes with cuticle development)

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard (MM)</td>
<td>6</td>
<td>M</td>
<td>5</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Possible anorexia on the day after treatment.

Dimecron: see phosphamidon

DIMETHOATE

Alternative Names: AC-12880, AC-18682, Cygon, Daphne, De-Fend, Demos-L40, Dimethogen, ENT 24650, Fostion MM, Le-Kuo, Perfektion, Rebelate, Rogor, Roxion, Trimection

Chemical Name: Phosphorodithioic acid, O,O-dimethyl S-[2-(methylamino)-2-oxoethyl] ester (CAS 60-51-5)

Primary Use: Insecticide, acaricide

Sample Purity: 99.8% and 97%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (95%CL) (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>41.7 (30.1-57.8)</td>
</tr>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>63.5 (45.8-88.1)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>20.0 (15.9-25.2)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Feathers drawn tightly to the body, mild tachypnea, ataxia, tensesness, fluffed feathers, imbalance, running and falling, tremors, clonic convulsions, immobility, myasthenia. Signs appeared as soon as 13 min and mortalities occurred overnight after treatment. Remission had occurred by 1 day after treatment.

Other Toxicity Data: The 30-day EMLD2 for mallards of both sexes (n = 6) is 6.0 mg/kg per day. The resulting cumulative toxicity index is 41.7/6 = 7, indicating a moderate degree of cumulative action in mallards.

The 30-day EMLD2 for 20- to 25-week-old pheasants of both sexes (n = 12) appears to lie between 4.0 and 10.0 mg/kg per day. The resulting cumulative toxicity index is 20.0/4.0-10.0 = 2.0-5.0, indicating a slight degree of cumulative action in pheasants.

Notes: Acetylcholinesterase measurements were made on the brains of the mortalities and the survivors of the pheasant 30-day EMED test. When compared with their controls (n = 6, ΔpH/45 min = 1.331, s = 0.029, range = 1.299-1.366), survivors which were sacrificed on the day following the final treatment showed 71.7% inhibition (n = 6, ΔpH/45 min = 0.377, s = 0.080, range = 0.310-0.489). When compared with their controls (n = 6, ΔpH/45 min = 1.097, s = 0.068, range = 0.996-1.159), mortalities showed 88.0% inhibition (n' = 6, ΔpH/45 min = 0.131, s = 0.085, range = 0.076-0.303).

Dimethogen: see dimethoate
Dimethoxy-DT: see methoxychlor
DIMETHYLFORMAMIDE

Alternative Names: DMF, DMFO

Chemical Name: N,N-dimethylformamide (CAS 68-12-2)

Primary Use: Solvent, carrier for the lampricide TFM

Sample Purity: Reagent grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard (st)</td>
<td>4</td>
<td>M</td>
<td>12<sup>b</sup></td>
<td>>2,000</td>
</tr>
<tr>
<td>Bobwhite (st) (HGP)</td>
<td>6</td>
<td>M</td>
<td>5</td>
<td>>460</td>
</tr>
<tr>
<td>Ring-billed gull (st)</td>
<td>6</td>
<td>M,F</td>
<td>A</td>
<td>>185</td>
</tr>
</tbody>
</table>

^aExcept as noted.

^bThese drakes may have been in breeding condition.

Signs of Intoxication: Jitteriness, slowness, ataxia, geotaxia, and falling. Signs appeared as soon as 10 min after treatment. Remission had occurred by the day after treatment.

Di-on: see diuron

DIOXATHION

Alternative Names: Delnav, ENT 22897, Hercules AC 528, Hercules 528, Navadel, Ruphos

Chemical Name: Phosphorodithioic acid, S,S'-1,4-dioxane-2,3-diy1 O,O',O'-tetraethyl ester (CAS 78-24-2)

Primary Use: Insecticide, acaricide

Sample Purity: 72% (cis-47%, trans-25%)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>277 (172-443)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>9</td>
<td>M</td>
<td>3-7</td>
<td>240 (190-302)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, imbalance, weakness, slowness, immobility, wing-beat convulsions and tetany. Signs appeared as soon as 30 min and mortalities usually occurred between 1.5 and 4 h after treatment. Remission took up to 2 weeks.

Dipel: see *Bacillus thuringiensis* (Berliner)
Dipterex: see trichlorfon
Diptetes: see trichlorfon

DINOSEB

Alternative Names: Basanite, Chemox General, Chemox P.E., dinitro, dinitrothiophenol, DN-289, DNBP, DNOBP, DNSBP, Dow General Weed Killer, Elgetol 318, ENT 1122, Gebutox, Kiloseb, Nitropone C, Premerge, Sinox General, Subitex

Chemical Name: 2-(1-Methylpropyl)-4,6-dinitrophenyl (CAS 88-85-7)

Primary Use: Herbicide, has also been used as an insecticide

Sample Purity: 97.6%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>27.6 (21.4-34.0)</td>
</tr>
</tbody>
</table>

Di-on: see diuron

DIQUAT DIBROMIDE

Alternative Names: Aquacide, Dextrone, FB/2, Reglone

Chemical Name: 6,7-Dihydrodipyrido[1,2-a:2',1'-c] pyrazinium dibromide (CAS 2764-72-9)

Primary Use: Herbicide
Sample Purity: 30%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>564 (324–982)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia (both rubbery-legged and tense-legged), nutation, wing-drop, wing shivers, immobility. Survivors took as long as 14 days to recover. Mortalities occurred 1 to 2 days after treatment.

Direz: see anilazine

DISPARLURE

Alternative Names: Disparmone, Pherocon GM

Chemical Name: 2-Decyl-3-(5-methylhexyl)-cis-oxirane (CAS 29804-22-6)

Primary Use: Male gypsy moth sex attractant (female-produced pheromone)

Sample Purity: Technical grade

Acute Oral Toxicity Summary: None

Signs of Intoxication: No signs were observed in dietary tests on mallards and bobwhites.

Other Toxicity Data: The 8-day dietary LC50 for 15-day-old mallard ducklings (n = 50) is >5,000 ppm. The 8-day dietary LC50 for 11- to 13-day-old bobwhite chicks (n = 40) is >5,000 ppm. Food consumption and body weight gains in the ducklings and the chicks in these studies appeared to be normal.

Disparmone: see disparlure

DISULFOTON

Alternative Names: BAY 19639, diethyl ethylthioethyl dithiophosphate, Di-Syston, Dithiodemeton, Dithiosystox, EN'T 23437, Frumin AL or G, M-74, S 276, Solvirex, thiodyemeton

Chemical Name: Phosphorodithioic acid, O,O-diethyl S-[2-(ethylthio)ethyl] ester (CAS 298-04-4)

Primary Use: Insecticide, acaricide

Sample Purity: 97%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>6.54 (3.76–11.4)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>11.9 (8.58–16.5)</td>
</tr>
<tr>
<td>Mule deer</td>
<td>3</td>
<td>F</td>
<td>10</td>
<td>2.50–5.00</td>
</tr>
<tr>
<td>Domestic goat</td>
<td>1</td>
<td>M</td>
<td>>60</td>
<td><15.0</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, goose-stepping ataxia, falling, wing-drop, tremors, slowness, hesitation in walking, immobility, nictitating membrane flicker, wing-beat convulsions, and tetany. One pheasant survivor was blind and several others may have had visual difficulty. Signs appeared as soon as 10 min and mortalities usually occurred between 1 and 3 h after treatment. Remission took up to 1 day in mallards and 10 days in pheasants.

Other Toxicity Data: The 30-day EMLD for 5- to 6-month old pheasants of both sexes (n = 12) is 3.00 mg/kg per day. The resulting cumulative toxicity index is 11.9/3.0 = 4.0, indicating a slight degree of cumulative action for disulfoton in pheasants.

The calculated percutaneous LD50 for 9- to 11-month-old mallard drakes (n = 8) after a 24-h dermal foot exposure is 192 (CL 96.0–384) mg/kg. Signs observed after percutaneous treatment included, in addition to several of the above, high carriage, dyspnea, using wings to aid pedestrian locomotion, wing shivers, and penile extrusion. Mortalities occurred between 5 and 24 h after the initiation of treatment. Remission took up to 2 days after the end of treatment. Mild dermal irritation was caused by exposure to disulfoton. When the percutaneous LD50 is compared with the acute oral LD50, disulfoton appears to have a relatively low order of dermal hazard in mallards.

Notes: Acetylcholinesterase activity measurements were made on the brains of pheasant mortalities and sacrificed survivors of the 30-day EMLD test. When compared with their controls (n = 6, ΔpH/45 min = 1.331, s = 0.029, range = 1.299–1.366), survivors sacrificed on the day after the final dosage of 6.00 mg/kg per day for 30 days showed 53.6% inhibition (n = 3, ΔpH/45 min = 0.617, s = 0.098, range = 0.530–0.724), whereas mortalities showed 91.7% inhibition (n = 3, ΔpH/45 min = 0.110, s = 0.080, range = 0.029–0.188). When compared with their controls (n = 6, ΔpH/45 min = 1.097, s = 0.068, range = 0.996–1.159), sacrificed survivors of the 3.00 mg/kg per day treatment level showed 31.7% inhibition (n = 5, ΔpH/45 min = 0.749, s = 0.140, range = 0.573–0.903); the single mortality showed only 18.1% inhibition (n = 1, ΔpH/45 min = 0.898).
For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

Di-Syston: see disulfoton
Dithane D-14: see nabam
Dithane Z-78: see zineb
Dithiodemeton: see disulfoton
Dithioxystox: see disulfoton
Ditraniil: see dicloran
Diurex: see diuron

DIURON

Alternative Names: DCMU, dichlorfenidim, Di-on, Diurex, DMU, Karmex, Marmer, Vonduron

Chemical Name: \(N'-(3,4-Dichlorophenyl)-N,N\text{-dimethyl urea} \) (CAS 330-54-1)

Primary Use: Herbicide

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia and frequent falling persisted for up to 11 days.

Divipan: see DDVP

D.M. 7537

Alternative Names: M & T Chemicals RS150

Chemical Name: 5-(p-Chlorophenyl) silatrane

Primary Use: Experimental rodenticide

Sample Purity: ≥95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog</td>
<td>6</td>
<td>M</td>
<td>–</td>
<td>467 (94.4-2,310)</td>
</tr>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>21.7 (12.5-37.9)</td>
</tr>
<tr>
<td>Mallard (st)</td>
<td>6</td>
<td>M</td>
<td>3-4</td>
<td>8.41 (5.00-14.1)</td>
</tr>
<tr>
<td>Pintail (st)</td>
<td>3</td>
<td>M</td>
<td>–</td>
<td><2.50</td>
</tr>
</tbody>
</table>

Signs of Intoxication: None.

D.M. 7597

Alternative Names: None found

Chemical Name: 5-(p-Chlorophenyl)-3,7,10-trimethyl silatrane

Primary Use: Experimental rodenticide

Sample Purity: Unknown

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albino rat</td>
<td>2</td>
<td>M</td>
<td>–</td>
<td>>500</td>
</tr>
</tbody>
</table>

Signs of Intoxication: None.

DMDT: see methoxychlor
DMF: see dimethylformamide
DMFO: see dimethylformamide
DMTP: see fenthion
DMU: see diuron
DN-289: see dinoseb
DNBP: see dinoseb
DNC: see DNOC
DND: see DDT

DNOC

Alternative Names: dinitroresol, DNC, Elgetol 30, ENT 154, Nitrador, Selinon, Sinox, Trifocide

Chemical Name: 2-Methyl-4,6-dinitrophenol (CAS 534-52-1)

Primary Use: Herbicide

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>7</td>
<td>M</td>
<td>3</td>
<td>>2,000</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>M</td>
<td>9-11</td>
<td>334 (265–421)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>6</td>
<td>F</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Tenseness, ataxia, ataraxia, falling, ptosis, slowness, sitting, withdrawal, immobility, catalepsy, bradypnea, and dyspnea. Signs appeared as soon as 1 day and mortalities occurred between 2 and 4 days after treatment in quail (no mortalities occurred in pheasants and mallards). Treatment levels as low as 500 mg/kg in pheasants and 250 mg/kg in mallards caused signs of intoxication. Remission took up to 7 days.

Dow ET-14: see równel
Dow ET-57: see równel
Dow General Weed Killer: see dinoseb
Dowicide 7: see PCP
Dowicide G: see PCP
Drazo: see methiocarb
DRC-714: see Gophacid
DRC-736: see methiocarb
DRC-1339: see Starlicide
DRC-3492: see 6-aminonicotinamide
DRC-4575: see BAY 98663
Drinox H-34: see heptachlor
DSE: see natham
DTMC: see dicofol
DU 112307: see difuron

DOWCO 214

Alternative Names: ENT 27520, OMS-1155

Chemical Name: Phosphorothioic acid, O,O-dimethyl O-(3,5,6-trichloro-2-pyridinyl) ester (CAS 5598-13-0)

Primary Use: Insecticide

Sample Purity: 99.3%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>12</td>
<td>1,682 (1,030–2,746)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>356 (185–685)</td>
</tr>
</tbody>
</table>

*These drakes were in active reproductive condition.

DUOMEEN T-E-9

Alternative Names: None found

Chemical Name: N-tallow-trimethylene diamines

Primary Use: Mosquito control agent (pre-imago stage), wetting and dispersing adjuvant

Sample Purity: ~99%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>12</td>
<td>1,682 (1,030–2,746)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>356 (185–685)</td>
</tr>
</tbody>
</table>
Signs of Intoxication: Polydipsia (in mallards), regurgitation, slowness, ataxia, fluffed feathers, goose-stepping ataxia, stumbling, imbalance, falling, sitting, hyporeactivity, ptosis, mydriasis, withdrawal, using wings to aid pedestrian locomotion, tremors, spasms, loss of righting reflex, mild tetanic seizures, ataxia, myasthenia, asthenia, immobility, and emaciation. Polydipsia and regurgitation occurred in mallards as soon as 20 min after treatment. Other signs appeared on the day following treatment and mortalities usually occurred between 1 and 11 days after treatment. Remission took up to 18 days.

Note: Small spleens were observed on gross necropsies of the pheasant mortalities.

Duphar: see tetradifon
Dupont 4179: see methomyl
Dursban: see chlorpyrifos
Du-Sprex: see dichlofluanil
DW 3418: see cyanazine
Dyfonate: see fonofos
Dylox: see trichlorfon
Dylox derivative: see C-12 trichlorfon
Dyrene: see anilazine
E-601: see methyl parathion
E-605: see parathion
E-1059: see demeton
E-3314: see heptachlor
Ectoral: see rotenone

EDIFENPHOS

Alternative Names: BAY 78418, edifenphos, Hinosan

Chemical Name: Phosphorodithioic acid, O-ethyl S,S-di-phenyl ester (CAS 17109-49-8)

Primary Use: Fungicide

Sample Purity: 93.4%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>10</td>
<td>M</td>
<td>3</td>
<td>>2,715</td>
</tr>
<tr>
<td>Pheasant</td>
<td>6</td>
<td>M</td>
<td>3–4</td>
<td>500–1,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Polydipsia, goose-stepping ataxia, geotaxia, ataxia, imbalance, wide stance, asthenia, falling, hypoactivity, poor reactions, ptosis, using wings to aid pedestrian locomotion. Signs appeared as soon as 30 min and mortalities occurred between 4 and 44 h after treatment. Remission took up to 8 days.

Notes: Signs of intoxication were induced in mallards at treatment levels as low as 60 mg/kg. This finding may indicate that long-term exposure to this chemical could be more hazardous than the acute oral LD50 indicates.

Edifenphos: see edifenphos
E.I. 47031: see Cyclone
E.I. 47300: see fenitrothion
Ektasol: see dicrotophos
EL-110: see Balan
Elancolan: see trifluralin
Elgetol 30: see DNOC
Elgetol 318: see dinoseb
Emmatos: see malathion
Emmatos Extra: see malathion
EN-18133: see thioniazin

ENDOSULFAN

Alternative Names: BIO-5462, Chlorthiepin, Cyclodan, ENT 23979, FMC-5462, HOE 2671, Insectophene, Kop-Thiodan, Malix, NIA 5462, Thifor, Thimul, Thiodan, Thionex

Chemical Name: 6,7,8,9,10,10-Hexachloro-1,5,5a,6,7,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide (CAS 115-29-7)

Primary Use: Insecticide

Sample Purity: 96%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>33.0 (23.8–45.8)</td>
</tr>
<tr>
<td>Mallard</td>
<td>20</td>
<td>M</td>
<td>12</td>
<td>45.0 (36.2–56.0)</td>
</tr>
<tr>
<td>Mallard</td>
<td>20</td>
<td>F</td>
<td>12</td>
<td>31.2 (20.8–46.6)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>7</td>
<td>M</td>
<td>3–4</td>
<td>80–160</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3–4</td>
<td>190 (137–263)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>16</td>
<td>F</td>
<td>12</td>
<td>>320</td>
</tr>
</tbody>
</table>

*Most of these drakes were in active breeding condition or in the beginning stages of gonadal regression.
*Most of these hens were in egg-laying condition or in the beginning stages of gonadal regression.

Signs of Intoxication: Ataxia, goose-stepping ataxia, slowness, high carriage, jerkiness, wings crossed high over the back, dyspnea, tremors, wing shivers, and falling. Terminal signs were not observed. Signs appeared as soon as 10 min in mallards and 1 h in pheasants, and mortalities usually occurred between 0.5 and 2 h after treatment in mallards and between 2 and 4 days in pheasants. Remission took up to 1 month.
Notes: Endosulfan is a lipid-soluble compound; it could therefore follow the pattern shown for DDT of being eliminated from the body in the eggs of a laying hen. Since mortalities occur several days after treatment in pheasants, but occur rapidly in mallards, the egg elimination mechanism could serve to protect the individual laying hen pheasant by giving it an additional route of toxicant metabolism. Most of the survivors of the acute oral LD50 test on 1-year-old hen pheasants either were laying or had recently been laying. This could explain the apparently reduced sensitivity of 1-year-old hen pheasants to the toxic effects of endosulfan. However, another explanation could be that this apparent difference in hen pheasant sensitivity is due to some effect of maturation, perhaps an increased ability of the older pheasants to detoxify the chemical.

The above data provide no evidence of significant difference in the susceptibility of mature male and female mallards to the toxic effects of endosulfan. For further data and discussion of the effects of age on the sensitivity of mallards to this compound, see Hudson et al. (1972).

ENDOTHALL

Chemical Name: 7-Oxadicyclo[2.2.1 heptane 2,3-dicarboxylic acid] (CAS 145-73-3)

Primary Use: Herbicide, defoliant

Sample Purity: 83.6%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard1</td>
<td>12</td>
<td>F</td>
<td>120</td>
<td>5.64 (2.71-11.7)</td>
</tr>
<tr>
<td>Sharp-tailed grouse2</td>
<td>12</td>
<td>F</td>
<td>-</td>
<td>1.06 (0.552-2.04)</td>
</tr>
<tr>
<td>California quail3</td>
<td>12</td>
<td>F</td>
<td>9-10b</td>
<td>1.19 (0.857-1.65)</td>
</tr>
<tr>
<td>Pheasant2</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>1.78 (1.12-2.83)</td>
</tr>
<tr>
<td>Rock dove4</td>
<td>16</td>
<td>M,F</td>
<td>-</td>
<td>2.0-5.0</td>
</tr>
<tr>
<td>Mule deer4</td>
<td>3</td>
<td>F</td>
<td>10</td>
<td>6.25-12.5</td>
</tr>
<tr>
<td>Domestic goat1</td>
<td>2</td>
<td>F</td>
<td>12-24</td>
<td>25.0-30.0</td>
</tr>
</tbody>
</table>

*Most of these hens were in egg-laying condition.

Signs of Intoxication: Ataxia, slowness, drowsiness, tremors, tracheal congestion, prostration, convulsions, wing-beat convulsions, and opisthotonos. Signs appeared as soon as 1 h and mortalities usually occurred between 1 h and 5 days after treatment. Remission took up to 1 week.

Other Toxicity Data: The 30-day EMLD for mallards (n = 12) is 0.250 mg/kg per day for both sexes. The resulting cumulative toxicity index is 5.64/0.25 = 22, indicating a moderately high degree of cumulative action.

The percutaneous LD50 for 10-month-old mallard drakes (n = 2) after a 24-h dermal foot exposure to the 97% sample appears to be >140 mg/kg. Signs observed after percutaneous treatment included hyperexcitability, tenseness, shakiness, jerkiness, ataxia, goose-stepping ataxia, slowness, and stumbling. These signs appeared as soon as 3 h after the initiation of treatment. Remission took up to 4 days after the end of treatment. Mild dermal irritation was caused by exposure to endrin. When the percutaneous LD50 is compared with the acute oral LD50, endrin appears to have a relatively low order of dermal hazard in mallards.

Notes: For data and discussion on the effects of age on the sensitivity of mallards to endrin, see Hudson et al. (1972).

For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

ENDRIN

Alternative Names: Compound 269, ENT 17251, Experimental Insecticide 269 (J. Hyman & Co.), Hexadrin, Mendrin

Chemical Name: 3,4,5,6,9,9-Hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-2,7,3,6-dimethanonaphth [2,3-b] oxyrene (CAS 72-20-8)

Primary Use: Insecticide

Sample Purity: 96%1 and 97%2

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard1</td>
<td>12</td>
<td>F</td>
<td>120</td>
<td>5.64 (2.71-11.7)</td>
</tr>
<tr>
<td>Sharp-tailed grouse2</td>
<td>12</td>
<td>F</td>
<td>-</td>
<td>1.06 (0.552-2.04)</td>
</tr>
<tr>
<td>California quail3</td>
<td>12</td>
<td>F</td>
<td>9-10b</td>
<td>1.19 (0.857-1.65)</td>
</tr>
<tr>
<td>Pheasant2</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>1.78 (1.12-2.83)</td>
</tr>
<tr>
<td>Rock dove4</td>
<td>16</td>
<td>M,F</td>
<td>-</td>
<td>2.0-5.0</td>
</tr>
<tr>
<td>Mule deer4</td>
<td>3</td>
<td>F</td>
<td>10</td>
<td>6.25-12.5</td>
</tr>
<tr>
<td>Domestic goat1</td>
<td>2</td>
<td>F</td>
<td>12-24</td>
<td>25.0-30.0</td>
</tr>
</tbody>
</table>

*Most of these hens were in egg-laying condition.

Signs of Intoxication: Ataxia, slowness, drowsiness, tremors, tracheal congestion, prostration, convulsions, wing-beat convulsions, and opisthotonos. Signs appeared as soon as 1 h and mortalities usually occurred between 1 h and 5 days after treatment. Remission took up to 1 week.

Other Toxicity Data: The 30-day EMLD for mallards (n = 12) is 0.250 mg/kg per day for both sexes. The resulting cumulative toxicity index is 5.64/0.25 = 22, indicating a moderately high degree of cumulative action.

The percutaneous LD50 for 10-month-old mallard drakes (n = 2) after a 24-h dermal foot exposure to the 97% sample appears to be >140 mg/kg. Signs observed after percutaneous treatment included hyperexcitability, tenseness, shakiness, jerkiness, ataxia, goose-stepping ataxia, slowness, and stumbling. These signs appeared as soon as 3 h after the initiation of treatment. Remission took up to 4 days after the end of treatment. Mild dermal irritation was caused by exposure to endrin. When the percutaneous LD50 is compared with the acute oral LD50, endrin appears to have a relatively low order of dermal hazard in mallards.

Notes: For data and discussion on the effects of age on the sensitivity of mallards to endrin, see Hudson et al. (1972).

For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).
ENT 25515: see phosphamidon
ENT 25540: see fenthion
ENT 25545-X: see isobenzan
ENT 25580: see thionazin
ENT 25602: see crufomate
ENT 25644: see fampur
ENT 25671: see Baygon
ENT 25705: see Imidan
ENT 25712: see trichloronat
ENT 25715: see fenitrothion
ENT 25719: see mirex
ENT 25726: see methiocarb
ENT 25734: see GC 6506
ENT 25766: see mexacarbate
ENT 25784: see aminocarb
ENT 25796: see fonofos
ENT 25809: see Cyclone
ENT 25843: see Landrin
ENT 26538: see captan
ENT 26559: see folpet
ENT 26665: see dichlobenil
ENT 27041: see Moban
ENT 27093: see aldicarb
ENT 27102: see Akton
ENT 27127: see bufencarb
ENT 27129: see monocrotophos
ENT 27164: see carbofuran
ENT 27165: see temephos
ENT 27311: see chlorpyrifos
ENT 27318: see ethoprop
ENT 27396: see methamidophos
ENT 27448: see phoxim
ENT 27520: see Dowco 214
ENT 27552: see bromopropylate
ENT 27572: see Nemacur
ENT 27625: see C-2307
ENT 27738: see Vendex
ENT 27822: see acephate
ENT 27985-B: see RU 11-679
ENT 28203: see trifluralin
ENT 28244: see atrazine
ENT 29054: see difluron
ENT 70460: see methoprene
Entex: see fenthion
Entoco growth regulant: see methoprene

EPN

Alternative Names: ethyl \(p \)-nitrophenyl thionobenzene-phosphonate, EPN-300, ENT 17798

Chemical Name: Phenyl phosphonothioic acid, \(O \)-ethyl \(O-\) (4-nitrophenyl) ester (CAS 2104-64-5)

Primary Use: Insecticide, acaricide

Sample Purity: 91\%, 65.2\%, 87.7\%
Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard¹</td>
<td>12</td>
<td>F</td>
<td>3</td>
<td>3.08 (2.38–4.00)</td>
</tr>
<tr>
<td>Mallard (MM)³</td>
<td>20</td>
<td>M</td>
<td>4–5</td>
<td>7.09 (5.18–9.69)</td>
</tr>
<tr>
<td>California quail¹</td>
<td>12</td>
<td>F</td>
<td>5–6</td>
<td>36.3 (28.0–47.1)</td>
</tr>
<tr>
<td>Japanese quail¹</td>
<td>12</td>
<td>F</td>
<td>2</td>
<td>5.25 (3.79–7.28)</td>
</tr>
<tr>
<td>Pheasant¹</td>
<td>12</td>
<td>F</td>
<td>3–5</td>
<td>53.4 (38.5–74.1)</td>
</tr>
<tr>
<td>Chukar¹</td>
<td>12</td>
<td>F</td>
<td>3</td>
<td>14.3 (10.3–19.8)</td>
</tr>
<tr>
<td>Rock dove¹</td>
<td>12</td>
<td>M,F</td>
<td>–</td>
<td>5.90 (4.25–8.17)</td>
</tr>
<tr>
<td>House sparrow¹</td>
<td>16</td>
<td>F</td>
<td>–</td>
<td>12.6 (7.16–22.2)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, imbalance, hyperexcitability, regurgitation, falling, sitting, goose-stepping ataxia, prostration, asthenia, myasthenia, salivation, lacrimation, tenesmus, diarrhea, loss of righting reflex, dyspnea, lethargy, tremors, wings spread, wing-drop, using wings for or to aid pedestrian locomotion, using wings to aid standing or balance, penile extrusion, tetany, and terminal wing-beat convulsions and opisthotonos. Signs appeared as soon as 30 min and mortalities occurred as soon as 1 h or as late as 2 days after treatment. Remission took up to 4 days.

Other Toxicity Data: The calculated percutaneous LD50 for the 65.2% sample in 1-year-old mallard hens (n = 8) after a 24-h dermal foot exposure is 480 (CL 240–960) mg/kg. The calculated percutaneous LD50 for the 87.7% sample in 4- to 5-month-old mallard (MM) drakes (n = 8) after a 24-h dermal foot exposure is 400 (CL 180–890) mg/kg. Signs were similar in these two tests and included, in addition to several of the above, phonation, slowness, exudate from nares, running and falling, and ataxia. Signs appeared as soon as 5 h and mortalities usually occurred between 7 and 24 h after the initiation of treatment; one mortality, however, occurred between 1 and 4 days after the initiation of treatment. Remission took up to 4 days. When the percutaneous LD50 is compared with the acute oral LD50, EPN appears to have a relatively low order of dermal hazard in mallards.

Notes: Acetylcholinesterase activity measurements were made on the brains of the mortalities and survivors of the acute oral and percutaneous tests of the 87.7% formulation in mallards (MM). Survivors were sacrificed between 14 and 16 days after the initiation of treatment. At that time, when compared with their controls (n = 3, ΔpH/45 min = 0.813, s = 0.100, range = 0.732–0.925), survivors of the acute oral treatment had a mean of 14.6% inhibition (n = 10, ΔpH/45 min = 0.694, s = 0.092, range = 0.535–0.846). When compared with their controls (n = 2, ΔpH/45 min = 0.766, s = 0.053, range = 0.748–0.823), survivors of the percutaneous treatment had a mean of 23.0% inhibition (n = 7, ΔpH/45 min = 0.605, s = 0.086, range = 0.426–0.701). Mortalities that occurred overnight after acute oral treatment showed only 8.8% inhibition (n = 3, ΔpH/45 min = 0.741, s = 0.092, range = 0.684–0.847), whereas mortalities that occurred more rapidly (on the day of treatment) showed 60.8% inhibition (n = 17, ΔpH/45 min = 0.319, s = 0.097, range = 0.169–0.513). Mortalities from the percutaneous treatment showed 49.1% inhibition (n = 2, ΔpH/45 min = 0.400, s = 0.037, range = 0.374–0.427).

For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

For a discussion of the comparative toxicity of EPN, see Tucker and Haegele (1971).

EPN-300: see EPN
Equino-Aid: see trichlorfon
Esteron: see 2,4-D
Esteron 245: see 2,4,5-T
Estone: see 2,4-D
ET-14: see roxennel
ET-57: see roxennel

ETHAMPHENPHION

Alternative Names: BAY 5505, BAY 69469, Muritan

Chemical Name: Phosphorothioic acid, O,O-diethyl O-(2-diethylaminomethyl-4-methylsulphonylphenyl) ester

Primary Use: Rodenticide

Sample Purity: Technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>8–11</td>
<td>10.4 (7.26–14.8)</td>
</tr>
<tr>
<td>Bobwhite</td>
<td>16</td>
<td>M</td>
<td>–</td>
<td>5.46 (4.19–7.11)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Polydipsia and regurgitation (in mallards), hyporeactivity, tenseness, slowness, ataxia, imbalance, running and falling, tremors, salivation, using wings for pedestrian locomotion, penile extrusion,
tonic convulsions of the legs, immobility, tetanic seizures, loss of righting reflex, and wing-beat convulsions. Signs appeared as soon as 6 min and mortalities usually occurred between 2 and 3 h after treatment. Remission took up to 10 days; however, the penis of one drake never retracted.

Other Toxicity Data: The calculated percutaneous LD50 for 1-year-old mallard drakes (n = 8) after a 24-h dermal foot exposure is 56.6 [40.0-80.0] mg/kg. Signs observed after percutaneous treatment included, in addition to several of those reported above, wings spread, lacrimation, and nasal exudate. Mortalities occurred overnight after the initiation of treatment. When the percutaneous LD50 is compared with the acute oral LD50, it appears that ethamphenphos has a slight to moderate degree of dermal hazard in mallards.

Note: For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

ETHION

Alternative Names: diethion, ENT 24105, NIA 1240, Niagara 1240, Nialate, phosphorodithioic acid, 8167 RP

Chemical Name: Phosphorodithioic acid, S,S'-methylene O,O',O'-tetraethyl ester (CAS 563-12-2)

Primary Use: Insecticide, acaricide

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>10</td>
<td>F</td>
<td>3</td>
<td>2,560</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>1,297</td>
</tr>
</tbody>
</table>

(745-2,257)

Signs of Intoxication: Ataxia, wing-drop, dyspnea, and falling. Signs appeared as soon as 1 h and mortalities occurred between 1.5 and 18 h after treatment. Remission took up to 2 days.

ETHOPROP

Alternative Names: ENT 27318, ethoprophos, Jolt, Mocap, phosphethrop, propophos, V-C9-104

Chemical Name: Phosphorodithioic acid, O-ethyl S,S-di-propyl ester (CAS 13194-48-4)

Primary Use: Nematocide, soil insecticide

Sample Purity: 95.8%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[10.6-15.0]</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>4.21</td>
</tr>
</tbody>
</table>

(3.03-5.83)

Signs of Intoxication: Regurgitation, ataxia, ataxia, violent wing-beat convulsions, salivation, lacrimation, ptosis, exudate from nares, dyspnea, and opisthotonos. Signs appeared as soon as 7 min and mortalities usually occurred between 15 and 60 min after treatment. Remission took up to 2 weeks.

Other Toxicity Data: The calculated percutaneous LD50 for 1-year-old mallard drakes (n = 8) after a 24-h dermal foot exposure is 10.6 [7.50-15.0] mg/kg. Signs observed after dermal exposure included hyporeactivity, ataxia, slowness, stumbling, falling, using wings to aid pedestrian locomotion, wings spread, immobility, dyspnea, spasms, lacrimation, asthenia, myasthenia, and penile extrusion in the mortalities. Signs appeared as soon as 2.5 h and mortalities usually occurred between 4 and 18 h after the initiation of treatment. One drake, however, experienced prolonged intoxication from which debilitation developed and death occurred 29 days after treatment had ended. Remission typically took up to 1 week. When the percutaneous LD50 is compared with the acute oral LD50, ethoprop appears to have an extremely high degree of dermal hazard in mallards.

Note: For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

Ethoprophos: see ethoprop
Ethyl p-nitrophenyl thionobenzene phosphonate: see EPN
Ethyl parathion: see parathion
Ethyl phosphates: see TEPP
Etion: see parathion
Etroline: see ronnel
Experimental Insecticide 269: see endrin
Experimental Insecticide 3911: see phorate
Experimental Insecticide 52160: see temephos
Experimental Nematocide 18133: see thionazin
E-Z-Off D: see DEF
Fampos: see fampfur
Famiphos: see fampfur

FAMPHUR

Alternative Names: AC-38023, American Cyanimid 38023,
Bo-Ana, CL 38023, Dovip, ENT 25644, Famfos, Famophos, Warbex

Chemical Name: Phosphorothioic acid, O-[4-[(dimethylamino)sulfonfyl]phenyl] O,O-dimethyl ester (CAS 52-85-7)

Primary Use: Systemic insecticide

Sample Purity: 35%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>9.87 (5.88-16.6)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation, goose-stomping ataxia, wing-drop, tremors, tonic seizures.

FB/2: see diquat dibromide
FBHC: see benzene hexachloride
Fen-All: see TBA
Fenamiphos: see Nemacur
Fence Rider: see 2,4,5-T
Fenchlorphos: see rotenone
Fenchlorphos: see rotenone

FENITROTHION

Chemical Name: Phosphorothioic acid, O,O-dimethyl O-(3-methyl-4-nitrophenyl) ester (CAS 122-14-5)

Primary Use: Insecticide, acaricide

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>1,190 (392-3,610)</td>
</tr>
<tr>
<td>Mallard</td>
<td>15</td>
<td>F</td>
<td>3</td>
<td>1,662 (185-14,938)</td>
</tr>
<tr>
<td>Sharp-tailed grouse</td>
<td>12</td>
<td>M</td>
<td>6-7</td>
<td>53.4 (42.4-67.3)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation (in mallards), ataxia, high carriage, wing-drop, wing shivers, falling, salivation, tremors, loss of righting reflex, tetanic seizures, dyspnea, miosis, lacrimation, and wing-beat convulsions. Signs appeared as soon as 30 min and mortalities usually occurred between 1 h and 4.5 days after treatment; one mortality, however, occurred 17.5 days after treatment. Remission took up to 16 days.

Other Toxicity Data: The calculated percutaneous LD50 for 1-year-old mallard drakes (n = 8) after a 24-h foot exposure is 504 (CL 370-686) mg/kg. Signs observed after dermal treatment were similar to those noted above. Mortalities occurred between 19 and 24.25 h after the initiation of treatment. Remission took up to 5 days. When the percutaneous LD50 is compared with the acute oral LD50, fenitrothion appears to have an extremely high degree of dermal hazard in mallards.

The 30-day EMLD for 4- to 5-month-old mallards of both sexes (n = 18) appears to lie between 3.33 and 10.0 mg/kg per day. The resulting cumulative toxicity index is R310/3.33-10.0 = 119-357, indicating an extremely high degree of cumulative action in mallards, particularly for an organophosphate. This finding may be accounted for in part by regurgitation of larger acute doses and better absorption of small subacute doses.

The 30-day EMLD for 5- to 6-month-old pheasants of both sexes (n = 12) appears to lie between 6.00 and 15.0 mg/kg per day. The resulting cumulative toxicity index is R55.6/6.00-15.0 = 3.56-9.27, indicating a moderate degree of cumulative action for fenitrothion in pheasants.

Notes: Gross necropsies of mortalities from the 30-day pheasant and mallard studies revealed many small spleens.

Acetylcholinesterase activity measurements were made on the brains of pheasant mortalities and survivors sacrificed on the day after the final dosage in the 30-day EMLD studies. When compared with their controls (n = 6, ΔpH/45 min = 1.331, s = 0.029, range = 1.299-1.366), survivors showed 68.3% inhibition (n = 6, ΔpH/45 min = 0.422, s = 0.093, range = 0.254-
0.531). When compared with their controls (n = 6, ΔpH/45 min = 1.097, s = 0.068, range = 0.996-1.159), mortalities showed 88.3% inhibition (n = 6, ΔpH/45 min = 0.128, s = 0.050, range = 0.051-0.184).

For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

Fenophosphon: see trichloronat
Fenprop: see silvex

FENSLFOTHION

Alternative Names: BAY 25141, Dasanit, ENT 24945, S 767, Terracur P

Chemical Name: Phosphorothonic acid, O,O-diethyl O-[4-(methylsulfonyl)phenyl] ester (CAS 115-90-2)

Primary Use: Insecticide

Sample Purity: 90%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>5-7</td>
<td>0.749 (0.595-0.944)</td>
</tr>
<tr>
<td>Sharp-tailed grous</td>
<td>3</td>
<td>M</td>
<td></td>
<td>0.500-1.00</td>
</tr>
<tr>
<td>California quail</td>
<td>20</td>
<td>M</td>
<td>9-10</td>
<td>1.68 (1.38-2.04)</td>
</tr>
<tr>
<td>California quail</td>
<td>20</td>
<td>F</td>
<td>9</td>
<td>1.19 (0.935-1.51)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>1.34 (1.06-1.68)</td>
</tr>
</tbody>
</table>

*Most of these cocks had well-developed testes, indicating their active breeding condition.

*Most of these hens had slightly to well-developed ovaries, indicating either active breeding condition or the early stages of gonadal development.

Signs of Intoxication: Regurgitation, ataxia, wings crossed high over back, wing and tail tremors, masseter tensity, dyspnea, opisthotonus. Signs appeared as soon as 20 min after treatment, and mortalities occurred in 34 min to 3 h. Survivors appeared normal the day after treatment.

Other Toxicity Data: The 30-day EMLD for 5- to 6-month-old mallards of both sexes (n = 12) is 0.200 mg/kg per day. The resulting cumulative toxicity index is 0.749/0.200 = 3.7, indicating little cumulative toxic action in mallards.

The calculated percutaneous LD50 for 1-year-old mallard hens (n = 8) after a 24-h dermal foot exposure is 2.86 (CL 2.10-3.89) mg/kg. Signs observed after dermal treatment were similar to those reported above. Mortalities occurred between 2 and 18 h after the initiation of treatment. Mild dermal irritation occurred after dermal exposure to fenstufolithion. Remission took up to 7 days. When the percutaneous LD50 is compared with the oral LD50, fenstufolithion appears to have a moderate degree of dermal hazard in mallards.

Notes: For data and discussion on the effects of age on the sensitivity of mallards to fenstufolithion, see Hudson et al. (1972).

For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

FENTHION

Alternative Names: BAY 29493, Baytex, DMTP, ENT 25450, Entex, Lebaycid, Mercaptophos, Queletox, S 1752, Tiguven

Chemical Name: Phosphorothonic acid, O,O-dimethyl O-[3-methyl-4-(methylthio)phenyl] ester (CAS 55-38-9)

Primary Use: Insecticide

Sample Purity: 90%¹ and 99%²

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada goose²</td>
<td>8</td>
<td>M,F</td>
<td></td>
<td>12.0 (8.48-17.0)</td>
</tr>
<tr>
<td>Mallard¹</td>
<td>12</td>
<td>F</td>
<td>4</td>
<td>5.94 (4.28-8.23)</td>
</tr>
<tr>
<td>Bobwhite²</td>
<td>4</td>
<td>M</td>
<td></td>
<td>≤4.00</td>
</tr>
<tr>
<td>California quail²</td>
<td>12</td>
<td>M</td>
<td>6-7</td>
<td>15.0 (11.9-18.9)</td>
</tr>
<tr>
<td>Japanese quail²</td>
<td>12</td>
<td>F</td>
<td>2-3</td>
<td>10.6 (8.41-13.3)</td>
</tr>
<tr>
<td>Pheasant²</td>
<td>12</td>
<td>F</td>
<td>7-22</td>
<td>17.8 (9.33-34.0)</td>
</tr>
<tr>
<td>Chukar¹</td>
<td>12</td>
<td>M,F</td>
<td>3</td>
<td>25.9 (15.8-42.7)</td>
</tr>
<tr>
<td>Rock dove²</td>
<td>12</td>
<td>M,F</td>
<td></td>
<td>4.63 (3.24-6.61)</td>
</tr>
<tr>
<td>Mourning dove (st)²</td>
<td>8</td>
<td>M,F</td>
<td></td>
<td>2.50 (1.25-5.00)</td>
</tr>
<tr>
<td>House sparrow (st)²</td>
<td>20</td>
<td>F</td>
<td></td>
<td>22.7 (14.6-35.1)</td>
</tr>
<tr>
<td>House finch (st)²</td>
<td>10</td>
<td>M,F</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

*These hens may have been in breeding condition.

Signs of Intoxication: Lacrimation, foamy salivation, tracheal congestion, goose-stepping ataxia, immobility, tonic
tremors, tachypnea, dyspnea, clonic convulsions or opisthotonos. Signs appeared as soon as 8 min and mortalities usually occurred between 30 min and 2 h after treatment. Remission took up to 2 days.

Other Toxicity Data: The calculated percutaneous LD50 for 10-month-old mallard drakes (n = 8) after a 24-h dermal foot exposure is 44.0 (CL 22.0–88.0) mg/kg. Signs observed after dermal treatment included, in addition to several of the above, wing-beat convulsions and penile extrusion. Mortalities usually occurred between 18 and 25 h after the initiation of treatment. When the percutaneous LD50 is compared with the acute oral LD50, fenthion appears to have a relatively low degree of dermal hazard in mallards.

The 30-day EMLD1 for mallards (n = 12) is 0.5 mg/kg per day for both sexes. The resulting cumulative toxicity index is 5.94/0.5 = 11.9, indicating moderate cumulative action. The fertility of eggs laid by survivors of the treatment level at 0.5 mg/kg per day was markedly reduced.

Notes: For a discussion of the comparative toxicity of fenthion, see Tucker and Haegele (1971).

For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

Fermide 850: see thiram
Fernasan: see thiram
Fernesta: see 2,4-D
Fernimine: see 2,4-D
Fernoxone: see 2,4-D
Ferxonex: see 2,4-D
Film extender: see Yuma Chemical “Spreader A”

FLUOMETURON

Alternative Names: C-2059, Cotoran, Lanex

Chemical Name: N,N-dimethyl-N’-[3-(trifluoromethyl)phenyl]urea (CAS 2164-17-2)

Primary Use: Herbicide

Sample Purity: 80% Wettable powder

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>F</td>
<td>3–4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, wing-drop or wings crossed high over back; tail pointed upward, fluffed feathers, hyperexcitability, phonation, falling. Signs appeared 15 min after treatment and persisted for up to a week.

FLUORODIFEN

Alternative Names: C-6989, Preforan, Soyex

Chemical Name: Benzene 2-nitro-1-(4-nitrophenoxy)-4-trifluoromethyl (CAS 15457-05-3)

Primary Use: Herbicide

Sample Purity: Technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pheasant</td>
<td>3</td>
<td>F</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: None.

FMC-5462: see endosulfan
FMC-10242: see carbofuran
FMC-17370: see resmethrin
Foliod: see parathion
Foliod M: see methyl parathion
Folithion: see fenitrothion
Fosolan: see PCNB
Folpan: see folpet

FOLPET

Alternative Names: ENT 26539, Folpan, Phaltan, thio- phal, trichloromethylithiophthalimide

Chemical Name: 2-[(Trichloromethyl)thio]-1H-isindole-1, 3(2H)-dione (CAS 133-07-3)

Primary Use: Fungicide

Sample Purity: 92.4%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: The only signs seen were mild ataxia and wings crossed high over back for up to 18 days. Slight weight losses occurred.

FONOFOSS

Alternative Names: Dyfonate, ENT 25796, N-2788, N-2790

Chemical Name: Ethylphosphorodithioic acid, O-ethyl S-phenyl ester (CAS 994-22-9)
Primary Use: Soil insecticide

Sample Purity: 94.3%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (95%CL) (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>16.9 (13.4-21.3)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Hyperexcitability, wide stance, reluctance to leave the swimming pond, ataxia, goose-stepping ataxia, falling, sitting, tremors, spasms, using wings to aid pedestrian locomotion, wing-drop, immobility, and terminal wing-beat convulsions. Signs appeared as soon as 25 min and mortalities usually occurred between 1 and 3 h after treatment. Remission took up to 4 days.

Forlin: see lindane
For-Mal: see malathion
Forron: see 2,4,5-T
Fos-Fall "A": see DEF
Fosferno M50: see methyl parathion
Fosfono 50: see parathion
Fostion MM: see dimethoate
Fratol: see sodium monofluoracetate
French pyrethroid: see RU 11-679
Fruitone A: see 2,4,5-T
Fruitone T: see silvex
Frumin AL: see disulfoton
Frumin G: see disulfoton
Fumazon: see Nemagon
Furadan: see carbofuran
Furloe: see CIPC
FW-293: see dicofol
Fyfanon: see malathion
G-24480: see Diazinon
G-30027: see atrazine
Gallotox: see PMA
Gamaphex: see lindane
Gamma BHC: see lindane
Gamma isomer of benzene hexachloride: see lindane
Gammalin: see lindane
Gammex: see lindane
Gammexane: see lindane
Gammopaz: see lindane
Gardentox: see Diazinon
Gardon: see tetrachlorvinphos
Garlon: see silvex
Garrothion: see carbofenothion
GC-1189: see chlordcone
GC-1283: see mirex

GC-6506

Alternative Names: ENT 25734

Chemical Name: Phosphoric acid, dimethyl 4-(methylthio) phenyl ester (CAS 3254-63-5)

Primary Use: Insecticide

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (95%CL) (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>1.12 (0.811-1.56)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>0.668 (0.531-0.842)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>5</td>
<td>F</td>
<td>4</td>
<td>0.500-1.00</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, goose-stepping ataxia, wing-drop, wing shivers, tremors, miosis, convulsions, running and falling, ataxia, tachypnea, tetanic seizures, and terminal wing-beat convulsions. Signs appeared as soon as 4 min and mortalities usually occurred between 15 min and 2.5 h after treatment; however, one mallard died 9 days after treatment. Remission took up to 2 weeks.

Gearphos: see methyl parathion
Gebutox: see dinoseb
Genitox: see DDT
Gesapon: see DDT
Gesaprim: see atrazine
Gesarex: see DDT
Gesarol: see DDT

GOPHACIDE

Alternative Names: BAY 38819, DRC-714, phosacetim, phosacetim

Chemical Name: Phosphoramidothioic acid, (1-iminoethy1)-O,O-bis(4-chlorophenyl) ester (CAS 4104-14-7)

Primary Use: Rodenticide

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (95%CL) (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog</td>
<td>2</td>
<td>M</td>
<td>--</td>
<td>>2,000</td>
</tr>
</tbody>
</table>
GRANDLURE

Alternative Names: Grandamone

Chemical Name: (3,3-Dimethylcyclohexylidene)-acetaldehyde, mixture with (2Z)-2-(3,3-dimethylcyclohexylidene) ethanol and (1R-cis)-1-methyl-2-(1-methylethenyl)cyclobutaneethanol (CAS 11104-05-5)

Primary Use: Female boll weevil sex attractant (pheromone produced by the male boll weevil)

Sample Purity: Technical grade

Acute Oral Toxicity Summary: None

Signs of Intoxication: No signs were observed in dietary tests on mallards or bobwhites.

Other Toxicity Data: The 8-day dietary LC50 for 15-day-old mallard ducklings (n = 50) is >5,000 ppm. The 8-day dietary LC50 for 11- to 13-day-old bobwhite chicks (n = 40) is >5,000 ppm. Food consumption and body weight gains in the ducklings and the chicks in these studies appeared to be normal.

Granosan: see Ceresan L, Ceresan M
Granutox: see phorate
GS-13005: see methidathion
GS-14260: see terbutryn
GS-19851: see bromopropylate
Guesapon: see DDT
Guesarol: see DDT
Gusathion: see azinphos-methyl
Gusathion M: see azinphos-methyl
Guthion: see azinphos-methyl

HEPTACHLOR

Alternative Names: Drinex H-34, E-3314, ENT 15152, Heptamul, Velisol 104

Chemical Name: 1,4,5,6,7,8,8-Heptachloro-3a,4,7,7a-tetrahydro-4,7-methano-1H-indene (CAS 76-44-8)

Primary Use: Insecticide

Sample Purity: 99.2%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>6</td>
<td>M</td>
<td>3</td>
<td>≥ 2,080</td>
</tr>
</tbody>
</table>

Signs of Intoxication: The only signs seen were ataxia, excessive swallowing, and nataion during the day of treatment. Mortalities occurred at night on the 6th and 8th days after administration.

Other Toxicity Data: For effects on mallard eggshell thickness, see Haegle and Tucker (1974).

Heptamul: see heptachlor
Herbicide 273: see endothall
Herbicide 282: see endothall
Herbicide 283: see endothall
Herbicide: see amitrole
Hercules 528: see dioxathion
Hercules 3956: see toxaphene
Hercules AC 528: see dioxathion
Herkol: see DDVP
HETP: see TEPP
Hexachlor: see benzene hexachloride
Hexachloran: see benzene hexachloride
Hexadrin: see endrin
Hexafos: see benzene hexachloride

HEXAFLURATE

Alternative Names: Nopalmate, Nopalmitate, TD-480

Chemical Name: Potassium hexafluoroarsenate (CAS 17029-22-0)

Primary Use: Herbicide (primary target—prickly pear cactus)
Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>193 (117–317)</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>M/F</td>
<td>12±</td>
<td>229 (132–399)</td>
</tr>
<tr>
<td>Gray partridge</td>
<td>12</td>
<td>M</td>
<td>–</td>
<td>142 (112–178)</td>
</tr>
</tbody>
</table>

These were in the early stages of gonadal regression at the end of the breeding season.

Signs of Intoxication: Regurgitation, circling, tremors, tenseness, spasms, dyspnea, tachypnea, polydipsia, opisthotonos, convulsions, and tetany. Signs appeared as soon as 10 min and mortalities occurred usually between 1 and 3 h after treatment. Remission took up to 1 week.

Other Toxicity Data: The 30-day EMLD for 4-month-old mallards of both sexes (n = 6) is 40.0 mg/kg per day. The resulting cumulative toxicity index is 193/40.0 = 4.8, indicating little cumulative toxicity of hexafluoride for mallards.

Hexathane: see zineb
Hexathir: see thiram
Hexavin: see carbaryl
Hexyclan: see benzene hexachloride
HHDN: see aldrin
Hinosan: see edifenphos
HL 331: see PMA
HOE 2671: see endosulfan
Hong Nien: see PMA
Hydout: see endothall
Hydrothol 47: see endothall
Hydrothol 191: see endothall
IFK: see IPC-400
Igran: see terbutryn
Igran 50: see terbutryn

IMIDAN

Alternative Names: ENT 25705, Phosmet, Phthalophos, Prolate, R-1504, Stauffer R-1504

Chemical Name: Phosphorodithioic acid, S-[1,3-dihydro-1,3-dioxo-2H-isodole-2-yl,methyl]O,O-dimethyl ester (CAS 732-11-6)

Primary Use: Insecticide, acaricide

Sample Purity: 97.2%

IPPC-400

Alternative Names: Chem-Hoe, IFK, INPC, IPC, Iso PPC, isopropyl carbanilate, proopham, Triherbide-IPC, Tuberite

Chemical Name: Carbamic acid, phenyl-1-methylethyl ester

Primary Use: Herbicide

Sample Purity: 40% active formulation

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation, high carriage, goose-stepping ataxia, falling when walking, walking with the aid of the wings. Signs persisted 2 to 4 weeks after single oral administration.
ISOBENZAN

Alternative Names: CP-14957, ENT 25545-X, SD 4402, Telodrin

Chemical Name: 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran (CAS 297-78-9)

Primary Use: Insecticide

Sample Purity: 99%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>5-7</td>
<td>4.15 (2.47-6.97)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, fasciculation, tenseness, swimming backwards, tail high and fanned, loss of righting reflex, circling, opisthotonos. Signs appeared as soon as 30 min and mortalities occurred about 2 h after treatment. Survivors appeared normal by the next day, but lost moderate amounts of body weight by the end of the 14-day observation period.

Iso PPC: see IPC-400
Isopropyl carbamate: see IPC-400
ISO-Systox: see demeton
Isotox: see benzene hexachloride
Ixodex: see DDT
Jolt: see ethoprop
Juvenile hormone mimic: see methoprene
Karbaspray: see carbaryl
Karbofos: see malathion
Karmex: see diuron
Kazide: see potassium azide
Kazox: see potassium azide
Kelthane: see dichlofluanidone
Kemate: see anilazine
Kepone: see chlordecone
Kill-All: see sodium arsenite
Kilmite 40: see TEPP
Kiloseb: see dinoseb
Kilrat: see zinc phospide
Kithiol: see malathion
Kobutol: see PCNB
Kop: see DDT
Kop-Thiodan: see endosulfan
Kop-Thion: see malathion
Korlan: see rennel
Kuron: see silvex
Kurosail: see silvex
Kiton: see silvex

Kypchlor: see chlordane
Kypfos: see malathion
Kypzin: see zineb
L-11/6: see phorate
L-36352: see trifluralin
Lamprecid 2770: see TFM
Lamprecide: see TFM

LANDRIN

Alternative Names: ENT 25843, OMS 597, SD 8530

Chemical Name: 2,3,5-Trimethylphenyl methylcarbamate; and 3,4,5-trimethylphenyl methylcarbamate(1:4) (CAS 12407-86-2)

Primary Use: Soil insecticide

Sample Purity: >95%¹ and 96%²

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard²</td>
<td>9</td>
<td>F</td>
<td>4</td>
<td>14.1 [10.0-20.0]</td>
</tr>
<tr>
<td>Mallard²</td>
<td>12</td>
<td>F</td>
<td>7-11²</td>
<td>28.3 (14.7-54.4)</td>
</tr>
<tr>
<td>California quail²</td>
<td>12</td>
<td>F</td>
<td>5-6</td>
<td>195 (141-271)</td>
</tr>
<tr>
<td>Japanese quail²</td>
<td>24</td>
<td>M</td>
<td>2</td>
<td>70.8 (32.6-154)</td>
</tr>
<tr>
<td>Pheasant²</td>
<td>9</td>
<td>M</td>
<td>2-3</td>
<td>67.2 (25.2-179)</td>
</tr>
<tr>
<td>Chukar²</td>
<td>12</td>
<td>M,F</td>
<td>7-11²</td>
<td>61.7 (43.2-88.1)</td>
</tr>
<tr>
<td>Rock dove¹</td>
<td>12</td>
<td>M,F</td>
<td>—</td>
<td>168 (121-233)</td>
</tr>
<tr>
<td>House sparrow²</td>
<td>20</td>
<td>M</td>
<td>—</td>
<td>46.3 (37.4-57.3)</td>
</tr>
<tr>
<td>House sparrow²</td>
<td>12</td>
<td>F</td>
<td>—</td>
<td>55.0 (38.5-78.6)</td>
</tr>
<tr>
<td>Mule deer²</td>
<td>4</td>
<td>M</td>
<td>5-11</td>
<td>70.7 (50.0-100)</td>
</tr>
</tbody>
</table>

| Domestic goat² | 1 | M | 36-48 | <210 |

*=These birds may have been in breeding condition.

Signs of Intoxication: Birds—hyperactivity, ataxia, slowness, wing-drop, salivation, lacrimation, diarrhea, tachypnea, tonic spasms, immobility, tetany, violent convulsions. Mammals—ataxia, tremors, salivation, variation, phonation, inability to stand, tachypnea, mucous-filled trachea, tachycardia, ataxia. Signs and mortality occurred as soon as 15 min after treatment. Mortalities generally occurred by 2 h and complete recovery among survivors took 1 to 3 days.
Note: For a discussion of the comparative toxicity of Lindan, see Tucker and Haegele (1971).

Lanes: see fluometuron
Lannate: see methomyl
Largus: see dimethoate
Larvaltox: see Bacillus thuringiensis (Berlin)
Lasso: see alachlor
Lazo: see alachlor
Lead tetraethyl: see tetraethyl lead
Lead, tetraethyl: see tetraethyl lead
Lebacyd: see fenfalon
Le-Kuo: see dimethoate
Lepton: see leptophos

LEPTOPHOS

Alternative Names: Abar, Lepton, Phosvel, VCS 506

Chemical Name: Phenyl phosphonothioic acid, O-(4-bromo-2,5-dichlorophenyl) O-methyl ester (CAS 21609-90-5)

Primary Use: Insecticide, experimental fungicide

Sample Purity: 90%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>9</td>
<td>F</td>
<td>4</td>
<td>1,333 (982-1,809)</td>
</tr>
<tr>
<td>Bobwhite</td>
<td>10</td>
<td>M</td>
<td>11</td>
<td>228 (184-283)</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>M</td>
<td>9-11</td>
<td>29.2 (20.4-41.6)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>62.8 (15.9-248)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, high carriage, jerkiness, running and falling, asthenia, unkemptness, sitting, hyporeactivity, hypoactivity, withdrawal, immobility, spasms, tremors, and ataxia. Signs appeared as soon as 30 min after treatment. Mortalities appeared to fall into two classes: most occurred rapidly (between 1 and 5 h after treatment), but some were delayed (between 6 and 24 h after treatment).

Notes: Acetylcholinesterase activity measurements were made of the brains of bobwhite mortalities and sacrificed survivors (14-28 days after treatment). When compared with their controls (n = 5, ΔpH/45 min = 1.101, s = 0.100, range = 0.976-1.226), mortalities that occurred within 5 h after treatment showed 74.8% inhibition (n = 3, ΔpH/45 min = 0.278, s = 0.207, range = 0.046-0.444). A single mortality that occurred overnight after treatment showed 7.7% inhibition (n = 1, ΔpH/45 min = 1.016); two mortalities that occurred overnight and one day after treatment showed no measurable inhibition (n = 2, ΔpH/45 min = 1.246, s = 0.056, range = 1.206-1.285). Sacrificed survivors showed only 0.6% inhibition (n = 8, ΔpH/45 min = 1.094, s = 0.152, range = 0.887-1.283).

One could speculate that two toxicological modes of action operate during intoxication with leptophos. One type of response could be attributed to depression of acetylcholinesterase activity by this pesticide. Mortalities associated with this response would be rapid and significant depression of cholinesterase activity would be found. The other type of response could be attributed to the chronic content of this pesticide, which could cause it to act in the manner of a central nervous system stimulant. Mortalities associated with this type of response would occur over a longer period of time and would not be accompanied by depression of cholinesterase activity. Other similarly chlorinated and brominated organophosphate compounds (such as chlorpyrifos) may possess similar toxicological properties.

Lilly 36532: see trifluralin
Lindanor: see lindane
Lindagam: see lindane

LINDANE

Alternative Names: ENT 7796, Forlin, Gamaphex, gamma BHC, gamma isomer of benzene hexachloride, Gammalin, Gammex, Gammexane, Gammopaz, Lindanor, Lindagam, Lintox, Novigam, Silvanol

Chemical Name: (1α,2α,3β,4α,5α,6β)-1,2,3,4,5,6-Hexachlorocyclohexane (CAS 58-89-9)

Primary Use: Insecticide

Sample Purity: 25%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation, polydipsia, tremors, circling, weakness, slowness of reflexes, opisthotonos.

Other Toxicity Data: The 30-day EMLD for mallards (n = 12) is 30 mg/kg per day for both sexes. The resulting cumulative toxicity index is >2,000/30 = >67, indicating a high degree of cumulative toxic action even for an organochlorine compound.
MALATHION

Alternative Names: AC 4049, carbofos, Chemathon, Compound 4049, Cythion, Emamate, Emmate Extra, ENT 17034, For-Mal, Pyfanon, Karbofos, Kithiol, Kop-Thion, Kypfos, Malamar, Malaspray, Malathion, mercaptobenzothiazole, MIB, phosphothion

Chemical Name: [(Dimethoxyphosphinothiyl)thio]butanedioic acid, diethyl ester (CAS 121-75-5)

Primary Use: Insecticide

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months*)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>24</td>
<td>F</td>
<td>3</td>
<td>1,485 (1,020-2,150)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3</td>
<td>167 (120-231)</td>
</tr>
<tr>
<td>Horned lark</td>
<td>9 M,F</td>
<td></td>
<td>A</td>
<td>403 (247-658)</td>
</tr>
</tbody>
</table>

*Except as noted.

Signs of Intoxication: Ataxia, walking high on toes, imbalance, hypoactivity, wing-drop, weakness, slowness, sitting, ptosis, falling with wings spread, tenesmus, salivation, swallowing, tremors, dyspnea, and convulsions. Signs appeared as soon as 25 min and mortalities usually occurred between 1 and 18 h after treatment. Remission took up to 7 days.

Notes: Acetylcholinesterase activity measurements were made of the brains of the horned larks. When compared with the controls (n = 7, ΔPH/45 min = 0.868, s = 0.059, range = 0.742-0.930), mortalities showed a mean inhibition of 86.9% (n = 3, ΔPH/45 min = 0.114, s = 0.090, range = 0.026-0.207), whereas sacrificed survivors (14 days after treatment) showed a mean inhibition of 21.4% (n = 8, ΔPH/45 min = 0.682, s = 0.130, range = 0.493-0.922).

MEMA RM

Alternative Names: Mercuran

Chemical Name: (Acetato-O)(2-methoxyethyl)mercury (CAS 151-38-2)

Primary Use: Fungicide

Sample Purity: 11.4% (7.15% mercury)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard (st)</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>1,039 (764-1,470)</td>
</tr>
<tr>
<td>Mule deer (st)</td>
<td>1</td>
<td>M</td>
<td>16</td>
<td>>250</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Mallards—ataxia, wings crossed high over back, tail down, wing shivers, salivation, collapse. Part of the dosage was regurgitated. Mortalities occurred as early as 1 h and as late as 6 days after treatment. Remission took as long as 2 weeks. Deer—piloerection, belching, bloody diarrhea, and anorexia. Remission took up to 2 weeks.

Mendrin: see endrin
Menite: see mevinphos
MEP: see fenitrothion
Mercaptodimethur: see methiocarb
Mercaptofos: see demeton
Mercaptofos: see fenitrothion
Mercaptothion: see malathion
Mercuram: see thiram
Mercuran: see Mema RM
Merpan: see captan
Mersolite: see PMA

MESTRANOL

Alternative Names: None found

Chemical Name: 3-Methoxy-19-nor-pregna-1,3,5(10)-trien-20yn-17-ol (CAS 72-33-3)
Primary Use: Antifertility agent, repellent

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M</td>
<td>3–4</td>
<td>>2,000</td>
</tr>
<tr>
<td>Red-winged</td>
<td>1</td>
<td>M</td>
<td>—</td>
<td>>913</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia and imbalance. Signs appeared as soon as 2.5 h after treatment. Remission took up to 2 days.

Other Toxicity Data: The 15-day EMLD for chukars (n = 1M, 3F) is greater than 20 mg/kg per day for both sexes. The chukars treated at this level displayed some salivation and general weakness only. A subsequent reproduction study with these chukars revealed reduced egg fertility compared with that of a control group receiving empty gelatin capsules for a month.

Mesurol: see methiocarb
Metacute 50: see methyl parathion
Metafos: see methyl parathion
Metalkamate: see bufencarb
Metaphos: see methyl parathion
Metasystemox: see oxydemetonmethyl
Meta-Systox-R: see oxydemetonmethyl
Metathion E-50: see fenitrothion

METHODIDATION

Alternative Names: GS-13005, Supracide, Ultracide, Ultra-

Chemical Name: Phosphorodithioic acid, S-[[5-methoxy-2-

Primary Use: Insecticide, acaricide

Sample Purity: 98.2%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada goose</td>
<td>15</td>
<td>M,F</td>
<td>A<sup>b</sup></td>
<td>8.41 (4.20–16.8)</td>
</tr>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3–4</td>
<td>23.6</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>4</td>
<td>33.2</td>
</tr>
<tr>
<td>Chukar</td>
<td>12</td>
<td>M,F</td>
<td>12–24<sup>b</sup></td>
<td>225 (178–283)</td>
</tr>
</tbody>
</table>

^aExcept as noted.
^bThese adult birds may have been in reproductive condition—they were tested in the early part of the breeding season.

Signs of Intoxication: Goose-stepping ataxia, leg weakness, dyspnea, lacrimation, salivation, prostration, ataxia, seizures with wings spread, terminal opisthotonus. Signs appeared as soon as 10 min and mortalities usually occurred between 90 min and after treatment. Remission took up to 2 days.

Note: Treatment levels as low as 77.9 mg/kg have produced mortalities in chukars.

METHIOCARB

Alternative Names: BAY 37344, BAY H-321, Draza, DRC-

Chemical Name: 3,5-Dimethyl-4-(methylthio)phenyl meth-

Primary Use: Insecticide, stupefiant, avian repellent

Sample Purity: 98%
Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50</th>
<th>95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>12.8</td>
<td>(7.37-22.4)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>11</td>
<td>F</td>
<td>3-6</td>
<td>-270</td>
<td></td>
</tr>
<tr>
<td>Horned lark</td>
<td>15</td>
<td>M,F</td>
<td>A</td>
<td>31.4</td>
<td>(20.4-48.4)</td>
</tr>
</tbody>
</table>

*Except as noted.

Signs of Intoxication: High carriage, tenseness, shakiness, ataxia, imbalance, backing, running and falling, disorientation, abnormal reactivity, sitting, withdrawal, ptosis, ataxia, clonic convulsions, immobility, dyspnea, and opisthotonos. Signs appeared as soon as 5 min and mortalities usually occurred between 1 and 2 h after treatment; however, two pheasants died 6-20 h after treatment. Remission took up to 1 week.

Notes: Acetylcholinesterase activity measurements were made on the brains of the horned larks. When compared with controls (n = 7, ΔpH/45 min = 0.868, s = 0.059, range = 0.742-0.930), mortalities showed 59.9% inhibition (n = 7, ΔpH/45 min = 0.348, s = 0.059, range = 0.231-0.440), whereas survivors sacrificed 14-17 days after treatment showed only 6.6% inhibition (n = 9, ΔpH/45 min = 0.811, s = 0.070, range = 0.719-0.904).

METHOMYLYL

Alternative Names: Dupont 4179, Insecticide 1179, Larvate, Nudrin

Chemical Name: N-[(Methylamino)carbonyloxy]ethamidothioic acid, methyl ester (CAS 16752-77-5)

Primary Use: Insecticide, nematocide

Sample Purity: 90%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50</th>
<th>95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>9</td>
<td>M</td>
<td>3-4</td>
<td>>2,000</td>
<td></td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, goose-stepping ataxia, slowness, reluctance to move, sitting, and withdrawal. Signs appeared as soon as 2 h and persisted for up to 2 days after treatment.

Note: Treatment levels as low as 500 mg/kg produced signs of intoxication in the mallards.

METHOXYCHLOR

Alternative Names: dianisylchloroethane, Dimethoxy-DT, DMDT, ENT 1716, Marlute, methoxy DDT, Moxie

Chemical Name: 1,1’-(2,2,2-Trichloroethylidene)-bis [4-methoxybenzene] 88% and related compounds 12% (CAS 72-43-5)

Primary Use: Insecticide

Sample Purity: Technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M</td>
<td>3</td>
<td>>2,000</td>
</tr>
<tr>
<td>Sharp-tailed grousse</td>
<td>3</td>
<td>M</td>
<td>A<sup>b</sup></td>
<td>>2,000</td>
</tr>
<tr>
<td>California quail</td>
<td>7</td>
<td>F</td>
<td>9-10<sup>b</sup></td>
<td>>2,000</td>
</tr>
</tbody>
</table>

*Except as noted.
^bMost of these birds were in reproductive condition.
Signs of Intoxication: Slight asthenia in the legs of mallards, jitteriness, low stance, and whips spread. Signs appeared as soon as 1 h after treatment. Remission took up to 2 days.

Notes: One of six California quail treated at 2,000 mg/kg died 6 days after treatment. Signs of intoxication, however, were not observed.

Methoxy DDT: see methoxychlor
Methyl demeton-O-sulfoxide: see oxydemetonmethyl
Methyl Guthion: see azinphos-methyl
Methylmercuric cyanoguanidine: see Panogen
Methyl nitrophenos: see fenitothion

METHYL PARATHION

Chemical Name: Phosphorothioic acid, O,O-dimethyl O-(4-nitrophenyl) ester (CAS 298-00-0)

Primary Use: Insecticide

Sample Purity: 80%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months*)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>16</td>
<td>M</td>
<td>3</td>
<td>10.0 (6.12-16.3)</td>
</tr>
<tr>
<td>Mallard</td>
<td>20</td>
<td>F</td>
<td>18</td>
<td>6.60 (4.42-9.88)</td>
</tr>
<tr>
<td>Mallard (MM)</td>
<td>15</td>
<td>F</td>
<td>4-5</td>
<td>60.5 (18.2-201)</td>
</tr>
<tr>
<td>Bobwhite</td>
<td>16</td>
<td>M</td>
<td>A</td>
<td>7.56 (5.70-10.0)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>2</td>
<td>8.21 (5.69-11.9)</td>
</tr>
<tr>
<td>Red-winged blackbird</td>
<td>12</td>
<td>F</td>
<td>A^b</td>
<td>23.7 (17.1-32.9)</td>
</tr>
</tbody>
</table>

*Except as noted.
^bThese birds may have been in reproductive condition.

Signs of Intoxication: Polydipsia, regurgitation, ataxia, falling, dyspnea, salivation, withdrawal, using wings for pedestrian locomotion, mutation, lacrimation, asynery, immobility, convulsions, wing-beat convulsions, and opisthotonos. Signs appeared as soon as 10 min and mortalities usually occurred between 15 min and 2 h after treatment. However, three bobwhites died between 4 and 20 h and one died 36 h after treatment. Remission usually took up to 2 days; however, one bobwhite showed prolonged signs, including ataxia, bradypnea, ptosis, convulsions, tremors, erection of the feathers on the head, ataxia, sitting, hyperexcitability, and disorientation for up to 14 days after treatment.

Other Toxicity Data: The calculated percutaneous LD50 for 5-month-old mallard (MM) hens (n = 8) after a 24-h dermal foot exposure is 53.6 (CL 39.3-72.9) mg/kg. Signs appeared as soon as 4 h and mortalities usually occurred between 7 and 21 h after the initiation of treatment. Remission took up to 2 days. Mild dermal irritation was caused by exposure to methyl paraathion. When the percutaneous LD50 is compared with the acute oral LD50, it appears that methyl parathion has an extremely high degree of dermal hazard in mallards.

Notes: Acetylcholinesterase activity measurements were made on the brains of the mallards (MM), bobwhites, and red-winged blackbirds from the above tests. Mallard mortalities from the acute oral treatment, when compared with controls (n = 2, ΔpH/45 min = 0.768, s = 0.026, range = 0.750-0.787), showed 76.2% inhibition (n = 8, ΔpH/45 min = 0.183, s = 0.161, range = 0.063-0.565); whereas mortalities from the percutaneous treatment, when compared with their controls (n = 2, ΔpH/45 min = 0.823, s = 0.037, range = 0.797-0.849), showed 91.2% inhibition (n = 6, ΔpH/45 min = 0.072, s = 0.020, range = 0.048-0.099). Mallard survivors of the acute oral treatment showed 12.8% inhibition (n = 17, ΔpH/45 min = 0.670, s = 0.132, range = 0.455-0.929), whereas survivors of the percutaneous treatment showed 37.7% inhibition (n = 3, ΔpH/45 min = 0.513, s = 0.132, range = 0.372-0.633) when they were sacrificed 14-15 days after treatment. Bobwhite mortalities, when compared with their controls (n = 12, ΔpH/45 min = 1.450, s = 0.083, range = 1.346-1.604), showed 93.6% inhibition (n = 12, ΔpH/45 min = 0.092, s = 0.069, range = 0.004-0.184), whereas survivors sacrificed 14-21 days after treatment showed 68.6% inhibition (n = 9, ΔpH/45 min = 0.455, s = 0.407, range = 0.012-0.994). Red-winged blackbird mortalities, when compared with their controls (n = 3, ΔpH/45 min = 1.747, s = 0.083, range = 1.667-1.833), showed 64% inhibition (n = 7, ΔpH/45 min = 0.628, s = 0.215, range = 0.347-0.896), whereas survivors sacrificed 14 days after treatment showed 26.5% inhibition (n = 9, ΔpH/45 min = 1.284, s = 0.118, range = 1.120-1.447).

For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

Methyl systox: see oxydemetonmethyl
Metilmercaptofosoksid: see oxydemetonmethyl
Metiltiazotion: see azinphos-methyl
Metimbapturion: see methiocarb
Metrifonate: see trichlorfon
Metron: see methyl parathion

MEVINPHOS

Alternative Names: ENT 22374, Menite, OS-2046, Phosdrin, Phosfene

Chemical Name: 3-[[Dimethoxyphosphinyloxyl]-2-butenolic acid, methyl ester (CAS 7786-34-7)

Primary Use: Insecticide, acaricide

Sample Purity: 100% analytical grade (60% α, 40% other)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD₅₀ 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>5–7</td>
<td>4.63 (3.57–6.00)</td>
</tr>
<tr>
<td>Sharp-tailed grousse</td>
<td>12</td>
<td>M</td>
<td>Aᵦ</td>
<td>1.34 (0.695–2.57)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>1.37 (0.951–1.98)</td>
</tr>
</tbody>
</table>

*Except as noted.
ᵦSome of these grousse may have been in reproductive condition.

Signs of Intoxication: Ataxia, either low or high carriage, toes curled, tachypnea, dyspnea, salivation, diarrhea, tremors, phonation, tetany or violent terminal wing-beat convulsions. Signs appeared as soon as 2 min in mallards and 5 min in the other species; mortalities usually occurred between 4 and 34 min in mallards and between 5 and 20 min after treatment in the other species. Remission took up to 12 days.

Other Toxicity Data: The calculated percutaneous LD₅₀ for 1-year-old mallard hens (n = 8) after a 24-h foot exposure is 11.1 (CL 4.98–24.7) mg/kg. Signs observed after dermal treatment included, in addition to several of the above, lacrimation, spasms, and wings spread. When the percutaneous LD₅₀ is compared with the acute oral LD₅₀, mevinphos appears to have a relatively high degree of dermal hazard in mallards.

Note: For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

MEXACARBATE

Alternative Names: Dowco 139, ENT 25766, Zectran

Chemical Name: 4-(Dimethylamino)-3,5-dimethylphenol methylcarbamate (ester) (CAS 315-18-4)

Primary Use: Insecticide

Sample Purity: ≥99% (recrystallized 3 times)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD₅₀ 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog</td>
<td>8</td>
<td>M</td>
<td></td>
<td>566 (283–1,131)</td>
</tr>
<tr>
<td>Canada goose</td>
<td>6</td>
<td>M,F</td>
<td></td>
<td>2.64 (2.00–3.48)</td>
</tr>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>5–7</td>
<td>2.98 (2.50–3.50)</td>
</tr>
<tr>
<td>Mallard duckling (st)</td>
<td>9</td>
<td>M,F</td>
<td>15–19 d</td>
<td>4.20 (3.50–5.00)</td>
</tr>
<tr>
<td>Sharp-tailed grousse</td>
<td>12</td>
<td>M</td>
<td>Aᵦ</td>
<td>10.0 (6.50–15.6)</td>
</tr>
<tr>
<td>California quail</td>
<td>9</td>
<td>F</td>
<td>18</td>
<td>7.14 (2.68–19.0)</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>12</td>
<td>F</td>
<td>2–3</td>
<td>3.21 (2.45–4.21)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>Aᵦ</td>
<td>4.57 (3.42–6.09)</td>
</tr>
<tr>
<td>Chukar</td>
<td>12</td>
<td>M,F</td>
<td>4–5</td>
<td>5.24 (4.17–6.61)</td>
</tr>
<tr>
<td>Sandhill crane</td>
<td>4</td>
<td>M,F</td>
<td></td>
<td>1.00–4.50 (3.72–11.3)</td>
</tr>
<tr>
<td>Rock dove</td>
<td>12</td>
<td>M,F</td>
<td></td>
<td>6.47 (2.00–4.00)</td>
</tr>
<tr>
<td>Mourning dove (st)</td>
<td>6</td>
<td>M,F</td>
<td>3</td>
<td>2.83 (2.00–4.00)</td>
</tr>
<tr>
<td>House sparrow</td>
<td>16</td>
<td>F</td>
<td>Aᵦ</td>
<td>50.4 (21.9–116)</td>
</tr>
<tr>
<td>House finch (st)</td>
<td>12</td>
<td>M</td>
<td>A</td>
<td>4.76 (3.43–6.60)</td>
</tr>
<tr>
<td>Mule deer</td>
<td>5</td>
<td>M,F</td>
<td>5–30</td>
<td>12.5–25.0</td>
</tr>
<tr>
<td>Domestic goat</td>
<td>2</td>
<td>M</td>
<td>A</td>
<td>15.0–30.0</td>
</tr>
</tbody>
</table>

*Except as noted.
ᵦSome of these birds may have been in breeding condition.

Signs of Intoxication: Ataxia, imbalance, neck tremors, nystagmus, miosis, hyporeactivity, sitting, reluctance to move, ataxia, falling, convulsions, tachypnea, dyspnea, lacrimation, salivation, diarrhea, tachycardia, tracheal congestion, hyperthermia, terminal convulsions. The most typical sign is increased respiratory rate (up to 3 or 4 times the normal rate for a species). Death appears to occur by respiratory paralysis. Zectran poisoning and recovery are rapid. Usually peak signs or death occurred within 1 h and recovery was often complete by 3 h.

Other Toxicity Data: LD₅₀’s of Zectran to mallards of six ages between 48 h and 7 months were nearly identical, indicating little change in susceptibility with age; see Hudson et al (1972).
The 30-day EMLD is 2.33, 5-10, and 1.25 mg/kg per day, respectively, for chukars (n = 1M, 5F), deer (n = 4), and mallards (n = 12). For mallards, the resulting cumulative toxicity index is 3.0/1.25 = 2.4, indicating little cumulative action.

No effects were seen on the fertility or hatchability of eggs produced by mallards surviving 2.66 mg/kg per day for 30 days.

A formulation of Zectran and Dowanol TPM was tested on 3- to 4-month-old female mallards (n = 9) and resulted in an acute oral LD50 of 35.0 mg/kg. This formulation contains 6% Zectran, which gives an LD50 of 2.1 mg/kg for the Zectran present. This level is close to the 2.98 mg/kg LD50 for recrystallized Zectran itself.

Notes: For a more detailed discussion of some of the above data, see Tucker and Crabtree (1969).

For a discussion of the comparative toxicity of mexacarbate, see Tucker and Haegele (1971).

MEXACARBATE (ACYLATED)

Alternative Names: acetylated mexacarbate, acetylated Zectran, Zectran (acylated)

Chemical Name: N-acetyl-4-dimethylamino-3,5-dimethyl-phenyl methylcarbamate ester

Primary Use: Experimental insecticide

Sample Purity: ≥ 80%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog</td>
<td>2</td>
<td>M</td>
<td>–</td>
<td><2,000</td>
</tr>
<tr>
<td>Mallard</td>
<td>18</td>
<td>F</td>
<td>3-4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: None for bullfrogs. For mallards, moderate ataxia, masseter tenseness, excessive chewing motions during first 4 or 5 h only.

Note: For a more detailed discussion of the above data, see Tucker and Crabtree (1969).

Microbial control agent: see *Nosema locustae*

MIREX

Alternative Names: Dechlorane, Dodecachloropentacyclo-
decane, ENT 25719, GC-1283

Chemical Name: 1,1a,2,2,3,3a,4,5,5a,5b,6-Dodeca-
chlorooctahydro-1,3,4-metheno-1H-cyclobuta[cde]penta-
lene (CAS 2385-85-5)

MOBAM

Alternative Names: ENT 27041, MCA-600, OMS-708

Chemical Name: Benzo[b]thiophene-4-ol, methylcarbamate (CAS 1079-33-01)

Primary Use: Insecticide

Sample Purity: 98%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>9</td>
<td>M</td>
<td>12(a)</td>
<td>952 (357-2,535)</td>
</tr>
<tr>
<td>Sharp-tailed grouse</td>
<td>8</td>
<td>M</td>
<td>–</td>
<td>173 (99-300)</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>M</td>
<td>5-6</td>
<td>463 (266-805)</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>12</td>
<td>M</td>
<td>2(b)</td>
<td>668 (530-842)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>2-3</td>
<td>228 (136-383)</td>
</tr>
<tr>
<td>Chukar</td>
<td>16</td>
<td>M,F</td>
<td>9(b)</td>
<td>237 (137-410)</td>
</tr>
<tr>
<td>House sparrow</td>
<td>12</td>
<td>M</td>
<td>A(b)</td>
<td>57.8 (33.2-101)</td>
</tr>
</tbody>
</table>

\(a\) Except as noted.

\(b\) Many of these birds may have been in breeding condition.

Signs of Intoxication: Asynergy, myasthenia, ataxia, imbalance, goose-stepping ataxia, stumbling or collapse,
tremors, lacrimation, foamy salivation, diarrhea, tachypnea, dyspnea, loss of righting reflex, ataxia, tetany, tonic convulsions, clonic convulsions, wing-beat convulsions, and phonation.

Other Toxicity Data: The 30-day EMLD for mallards (n = 3M, 3F) is 40 mg/kg per day. The resulting cumulative toxicity index is 952/40 = 24, indicating a high degree of cumulative toxic action for a carbamate.

The fertility, hatchability, and chick survivability of eggs produced by pheasants (n = 3M, 3F) surviving 30 daily oral doses at a treatment level of 40 mg/kg per day were similar to those of a control group of pheasants treated 30 days with empty gelatin capsules.

Notes: For a discussion of the comparative toxicity of Mobam, see Tucker and Haegele (1971).

Mocasp: see ethoprop
Molluscicide Bayer 73: see clonitalid
Monitor: see methidathoxam
Monocron: see monocrotophos

MONOCROTOPHOS

Alternative Names: Azodrin, CIBA 1414, ENT 27129, Monocron, Nuvacron, SD 9129

Chemical Name: (E)-Phosphoric acid, dimethyl [1-methyl-3-(methylamino)-3-oxo-1-propenyl] ester (CAS 919-44-8)

Primary Use: Insecticide

Sample Purity: >75%,1 >80%2

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)a</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock dove1</td>
<td>24</td>
<td>M,F</td>
<td>A</td>
<td>2.83 (1.39-5.75)</td>
</tr>
<tr>
<td>House sparrow1</td>
<td>10</td>
<td>M</td>
<td>A</td>
<td>1.48 (1.07-2.04)</td>
</tr>
<tr>
<td>House finch2</td>
<td>5</td>
<td>M</td>
<td>A</td>
<td>8.10-24.3</td>
</tr>
<tr>
<td>Mule deer1-2</td>
<td>6</td>
<td>F</td>
<td>8-28</td>
<td>25.0-50.0</td>
</tr>
<tr>
<td>Domestic goat1</td>
<td>2</td>
<td>F</td>
<td>8-12</td>
<td>20.0-50.0</td>
</tr>
</tbody>
</table>

Notes: Except as noted.
Some of these birds may have been in breeding condition.

Signs of Intoxication: Birds—fluffed feathers, eyes closed, ataxia, lacrimation, salivation, polydipsia, dyspnea, tracheal congestion, defection, mydriasis, hyperactive nictitating membrane, tremors, wing-beat convulsions, tetany or opisthotonus. Mammals—ataxia, miosis, hyporeactivity, constant quivering, immobility, tracheal congestion, tachypnea, dyspnea, phonation. Mortalities usually occurred 1 to 60 h after treatment. Remission usually took up to 4 days; however, some mortalities occurred after this time.

Other Toxicity Data: The 30-day EMLD1 for mallards (n = 6M, 6F) is about 0.25 mg/kg per day. The resulting cumulative toxicity index is 4.76/0.25 = 19.4, indicating a high degree of cumulative action for an organophosphate.

The calculated percutaneous LD50 for the 75% sample for 1-year-old mallard drakes (n = 8) after a 24-h dermal foot exposure is 80.0 (CL 13.5-66.8) mg/kg. In general, signs were similar to those reported above. Mortalities usually occurred between 3 and 19 h after the initiation of treatment. Remission took up to 3 days after treatment had ended. When the percutaneous LD50 is compared with the acute oral LD50, it appears that monocrotophos has a moderate degree of percutaneous hazard in mallards.

Notes: Gross necropsies often revealed endocardial and gastrointestinal hemorrhaging.

For a discussion of the comparative toxicity of monocrotophos, see Tucker and Haegele (1971).

For data and discussion on the effects of age on the sensitivity of mallards to monocrotophos, see Hudson et al. (1972).

Monosodium fluoracetate: see sodium monofluoracetate
Monsanto CP-47114: see fenitothion
Morsodren: see Panogen
Motox: see toxaphene
Mous-con: see zinc phosphate
Moxie: see methoxychlor
M & T Chemicals RS150: see D.M. 7537
Muritan: see ethamphenphon
Muscatox: see coumaphos
N-2788: see fonofos
N-2790: see fonofos

NABAM

Alternative Names: Chem Bam, Dithane D-14, DSE, ENT 9106, Parzate, Spring-Bak

Chemical Name: 1,2-Ethanediylbiscarbamodithioic acid, disodium salt (CAS 142-59-6)

Primary Use: Fungicide

Sample Purity: 93%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog</td>
<td>6</td>
<td>F</td>
<td>—</td>
<td>420 (250–707)</td>
</tr>
<tr>
<td>Mallard</td>
<td>4</td>
<td>M</td>
<td>3–4</td>
<td>>2,560</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>12</td>
<td>M</td>
<td>2</td>
<td>2,120 (1,680–2,670)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>9</td>
<td>M</td>
<td>3–5</td>
<td>707 (500–1,000)</td>
</tr>
<tr>
<td>Rock dove</td>
<td>5</td>
<td>M,F</td>
<td>—</td>
<td>>2,000</td>
</tr>
<tr>
<td>Domestic goat</td>
<td>2</td>
<td>M</td>
<td>11</td>
<td>>800</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, tremors, tachypnea, myasthenia, salivation, miosis, tenesmus, diarrhea, piloerection.

NALED

Alternative Names: bromchlophos, Bromex, Dibrom, ENT 24988, RE-4355

Chemical Name: Phosphoric acid, 1,2-dibromo-2,2-dichloroethyl dimethyl ester (CAS 300-76-5)

Primary Use: Insecticide, acaricide

Sample Purity: 93%, 1 92%2

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada goose1</td>
<td>9</td>
<td>M,F</td>
<td>—</td>
<td>49.9 (31.7–78.6)</td>
</tr>
</tbody>
</table>

NEMACUR

Alternative Names: BAY 68138, ENT 27572, fenamiphos (proposed), phenamiphos (proposed)

Chemical Name: Phosphoroid acid, ethyl 3-methyl-4-(methylthio) phenyl(1-methylethyl) ester (CAS 2224-92-6)

Primary Use: Nematocide

Sample Purity: 81%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard1</td>
<td>12</td>
<td>M</td>
<td>—</td>
<td>52.2 (37.8–72.3)</td>
</tr>
<tr>
<td>Sharp-tailed</td>
<td>12</td>
<td>M</td>
<td>A</td>
<td>64.9 (37.3–113)</td>
</tr>
<tr>
<td>grous1</td>
<td></td>
<td></td>
<td></td>
<td>120 (30.0–480)</td>
</tr>
<tr>
<td>Pheasant2</td>
<td>16</td>
<td>M</td>
<td>3–41</td>
<td>~200</td>
</tr>
</tbody>
</table>

*Except as noted.

Signs of Intoxication: Ataxia, goose-stepping ataxia, tachypnea, salivation, tremors, loss of righting reflex, violent wing-beat convulsions, and opisthotonos. Signs appeared as soon as 5 min and mortalities usually occurred between 15 min and 3.5 h after treatment; however, one pheasant died between 2 and 3 days after treatment. Remission took up to 2 weeks.

Note: A treatment level as low as 22.2 mg/kg caused a mortality in Canada geese.

Nankor: see ronnel
Naphthalenes: see Panason AN-2
Naphthene + dinaphthene benzenes: see Panason AN-2
Naracycin A: see cycloheximide
Navadel: see dioxathion
Neguvon: see trichlorfon

Most of these hens were in breeding condition.

Signs of Intoxication: Ataxia, goose-stepping ataxia, slow-
ness, withdrawal, hyporeactivity, wing-drop, regurgitation, tachypnea, rapid swallowing, using wings for pedestrian locomotion, immobility, ataxia, lacrimation, salivation, dyspnea, tetanic seizures, wing tremors, opisthotonos, and terminal wing-beat convulsions. Signs appeared as soon as 10 min and mortalities usually occurred between 0.5 and 2 h after treatment. Remission took up to 14 days.

Other Toxicity Data: The calculated percutaneous LD50 for 1-year-old mallard drakes (n = 8) after a 24-h dermal foot exposure is 23.8 (CL 17.5–32.4) mg/kg. Signs observed were similar to those reported above, and appeared as soon as 4 h after the initiation of treatment. Mortalities usually occurred between 19 and 24 h after the initiation of treatment. When the percutaneous LD50 is compared with the acute oral LD50, Nemacur appears to have a relatively low degree of dermal hazard in mallards.

Note: For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

Nemaphos; see thionazin
Nemaflume; see Nemagon

NEMAGON

Alternative Names: BBC 12, DBCP, dibromochloropropane, ENT 18445, Fumazine, Nemaflume, OS 1897

Chemical Name: 1,2-Dibromo-3-chloropropane (CAS 96-12-8)

Primary Use: Nematocide

Sample Purity: 95% active ingredient and 5% other halogenated C3 compounds

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg) 95%CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>1–3</td>
<td>66.8 (48.2–92.6)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3–4</td>
<td>156 (89.3–271)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, hyporeactivity, slowness, falling, plosis, tremors, lethargy, asthenia, myasthenia, backing, withdrawal, ataxia, somersaulting onto the back or side, and immobility. Signs appeared as soon as 15 min and mortalities usually occurred between 1 and 9 days after treatment. Remission took up to 2 weeks.

Notes: A treatment level as low as 60.0 mg/kg caused a mortality in pheasants.

Nemaphos; see thionazin
Neocid; see DDT
Neociddle; see Diazinon
Neoron; see DDT
Neostanox; see Vendex
NIA 1240; see ethion
NIA 5462; see endosulfan
NIA 5488; see tetratifen
NIA 5996; see dichlobenil
NIA 10242; see carbofuran
NIA 17370; see resmethrin
NIA 24110; see RU 11-679
Niagara 1240; see ethion
Niagrathal; see endothall
Nialate; see ethion

NICOTINE SULFATE

Alternative Names: Black Leaf 40, ENT 2435

Chemical Name: (S)-3-[(1-methyl-2-pyrrolidinyl) pyridine sulfate,(2:1) (CAS 65-30-5)

Primary Use: Insecticide

Sample Purity: 40%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg) 95%CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>4</td>
<td>587 (397–869)</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>12</td>
<td>M</td>
<td>2</td>
<td>530 (383–735)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>8</td>
<td>F</td>
<td>3–4</td>
<td>1,200–2,000</td>
</tr>
<tr>
<td>Rock dove</td>
<td>5</td>
<td>M</td>
<td></td>
<td>>2,000</td>
</tr>
<tr>
<td>Mule deer</td>
<td>3</td>
<td>F</td>
<td>12</td>
<td>100–200</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Wing shivers or fasciculation, ataxia, excessive swallowing and chewing motions, masseter tenseness, mild narcosis, strong whole-body tremors, miosis, terminal wing-beat convulsions or opisthotonos. Levels as low as 6.0 mg/kg produced some signs in mallards. In most species mortalities occurred as soon as 6 min or as late as 2 days following treatment.

Nicoline; see rotenone
Nifos T; see TEPP
Nimitox; see temephos
Niran; see chlordane, parathion
Nitrador; see DNOC
Nitral; see Planavin
Nitropropone C; see dinoseb
Nitrostigmine; see parathion
Nitrox; see methyl parathion
Nitrox 80; see methyl parathion
NORBOMIDE

Alternative Names: McNeil 1025, Raticate, Shoxin

Chemical Name: 3a,4,7,7a-Tetrahydro-5-(hydroxyphenyl-2-pyridinylmethyl)-7-(phenyl-2-pyridinylmethylene)-4,7-methano-1H-isindole-1,3(2H)-dione (CAS 991-42-4)

Primary Use: Experimental rodenticide

Sample Purity: 20%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M</td>
<td>9–10</td>
<td>>3,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation, dyspnea, polydipsia, slight loss of balance, excessive preening. No significant changes in body weight had occurred by the end of the 14-day observation period.

NOSEMA LOCUSTAE

Alternative Names: None found

Chemical Name: Nosema locustae Canning (Microsporidia: Nosematidae), a microsporidian protozoan

Primary Use: An experimental microbial control agent for grasshoppers and Mormon crickets, commonly applied at the rate of 2.47 × 10⁸ spores per hectare.

Sample Purity: 1.72 × 10⁶ spores/mL water, 1 5 × 10⁶ spores/mL water²

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (spores/bird)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>10</td>
<td>M,F</td>
<td>1</td>
<td>>5 × 10⁹</td>
</tr>
<tr>
<td>Pheasant</td>
<td>10</td>
<td>M</td>
<td>A</td>
<td>>5 × 10⁹</td>
</tr>
</tbody>
</table>

²Except as noted.

Signs of Intoxication: None.

Notes: One mallard died 2 months after treatment, but 9 other mallards and 10 controls survived and appeared normal throughout the 7-month observation period before sacrifice. We have no explanation for the single mallard mortality; however, it was probably not related to treatment with Nosema locustae.

Novathion: see fenitrothion
Novigam: see lindane
NRDC 104: see resmethrin
Nucidol: see Diazinon

NUCLEOPOLYHEDRAL VIRUS

Alternative Names: Hemerocampa pseudotsugata, polyhedric virus, viral pesticide

Chemical Name: A preparation of the nucleopolyhedrosis virus Hemerocampa pseudotsugata

Primary Use: Experimental insecticide

Sample Purity: 30.01 × 10⁶ polyhedra per milligram

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>2</td>
<td>M,F</td>
<td>4</td>
<td>>404</td>
</tr>
<tr>
<td>Pheasant</td>
<td>1</td>
<td>F</td>
<td>4</td>
<td>>384</td>
</tr>
<tr>
<td>House sparrow (st)</td>
<td>1</td>
<td>F</td>
<td>--</td>
<td>>1,969</td>
</tr>
<tr>
<td>Mule deer</td>
<td>1</td>
<td>M</td>
<td>--</td>
<td>>52.9</td>
</tr>
</tbody>
</table>

Signs of Intoxication: No signs, or minor temporary weakness only.

Other Toxicity Data: The percutaneous LD50 for a male albino rabbit (n = 1) after a 28-h exposure appears to be greater than 241 mg/kg.

Three hen mallards survived repeated daily dosages of 5 mg/kg per day for 5 days, at which time treatment was terminated.

Notes: In terms of the proposed field application rates, these doses are quite large, equaling 1.5 times the 50 × 10⁶ polyhedra applied per hectare. It should be kept in mind, however, that each infected target insect larva can produce 2 to 20% of this original treatment rate.

Minor primary dermal irritation was noted on the rabbit tested (equal to +1 on the FDA scale for erythema and edema).

The mule deer displayed moderate transient neutrophilia and eosinophilia after oral administration. This response could be interpreted as initial metabolic intoxication and allergic response to the foreign protein of the virus preparation.
Nudrin: see methomyl
Nuvacon: see monocrotophos
Nuvan: see DDVP
Nuvanol: see fenithrothrin
Nux vomica: see strychnine
Nylmate: see PMA
Octachlor: see chlordane
Octachlorocamphene: see toxaphene
Octa-Klor: see chlordane
Octalene: see aldrin
Octalox: see dieldrin
Octamethylpyrophosphoramide: see schradan
n-Octyl sulfoxide of isosafrole: see sulfoxide

OIL HERDER

Alternative Names: Shell Oil Herder

Chemical Name: 60% of an active material which is described as a linear primary alcohol of C₁₄ to C₁₅ range, 40% ethylene glycol monobutyl ether

Primary Use: Oil-spill clean-up agent

Sample Purity: 100%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD₅₀ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard (st)</td>
<td>6</td>
<td>F</td>
<td>4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Low carriage, ataxia, imbalance, stumbling, falling, wing-drop, polydipsia, hyperexcitability, unkindness, and hypokinesis. Signs were extreme as soon as 15 min after treatment. Remission took up to 2 days.

OIL HERDER #2

Alternative Name: Shell Oil Herder #2

Chemical Name: 60% of an active material which is described as a linear primary alcohol of C₁₂ to C₁₅ range, 40% butyl alcohol

Primary Use: Oil-spill clean-up agent

Sample Purity: 100%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD₅₀ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard (MM; st)</td>
<td>19</td>
<td>M</td>
<td>4-5</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

OXYDEMETONMETHYL

Alternative Names: BAY 21097, BAY 21116, demeton methyl, demeton-S-methyl-sulfoxide, ENT 24964, metasystox, Metasystox R, Meta-Systox-R, methyl demeton-O-sulfoxide, methyl stox, metilmercaptosfloskrid, R-2170

Chemical Name: Phosphorothioic acid, S-[2-(ethylsulfinyl)ethyl] O,O-dimethyl ester (CAS 301-12-2)

Primary Use: Insecticide

Sample Purity: 50%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD₅₀ 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>4</td>
<td>53.9 (38.9-74.8)</td>
</tr>
</tbody>
</table>
PANOGEN

Alternative Names: methylmercuric cyanoguanidine, Morsoden, Panogen 42

Chemical Name: Mercury, (cyanoguanidinato-N')-(methyl) (CAS 502-39-6)

Primary Use: Seed disinfectant, fungicide

Sample Purity: 100%¹ and 6.3% formulation²

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>6</td>
<td>M</td>
<td>4</td>
<td>53.0 (31.5–89.1)</td>
</tr>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>561</td>
</tr>
<tr>
<td>Pheasant</td>
<td>9</td>
<td>M</td>
<td>3</td>
<td>566</td>
</tr>
<tr>
<td>House sparrow (st)²</td>
<td>2</td>
<td>M,F</td>
<td>–</td>
<td>300–900</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation, polydipsia, general weakness, slowness of reactions, fluffed feathers, tetany when disturbed, coma. Remission took up to 1 week.

Note: See "Notes" for PMA

Panogen 42: see Panogen
Panoram D-31: see dieldrin
Panthion: see parathion
Paramer: see parathion
Paraphos: see parathion
Paraquat CL: see paraquat dichloride

PANASOL AN-2

Alternative Names: None found

Chemical Name: An aromatic solvent composed of 23.7% C₆ to C₁₆ alkylbenzenes, 17.7% naphthalene, 46.3% C₁₁ to C₁₃ substituted naphthalenes, 11.2% C₈ to C₁₄ naphthene + dinaphthene benzenes, and 1.1% C₁₂ to C₁₆ acenaphthenes (percent by volume)

Primary Use: Insecticide and herbicide solvent

Sample Purity: Technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard (MM; st)</td>
<td>9</td>
<td>M</td>
<td>4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Polydipsia, regurgitation, ataxia, sitting, and slowness. Signs appeared as soon as 2 min after treatment; however, no mortalities occurred. Remission had occurred by the day following treatment.

PARAQUAT DICHLORIDE

Alternative Names: Dextroene X, Gramoxone, Ortho Paraquat, paraquat CL, PP-148, PP-910, Weedol

Chemical Name: 1,1'-Dimethyl-4,4'-bipyridinium dichloride (CAS 1910-42-5)

Primary Use: Herbicide

Sample Purity: 21%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard (st)</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>199 (144–276)</td>
</tr>
</tbody>
</table>
Signs of Intoxication: Polydipsia, regurgitation, swallowing, ataxia, imbalance, wing-drop, hyporeactivity, slowness, asthenia, sitting, running and falling, and possible miosis. Polydipsia and regurgitation appeared as soon as 9 min and other signs of intoxication appeared 3 h after treatment. Mortalities usually occurred between 3 and 20 h after treatment; however, one bird died between 1 and 2 days after treatment. Remission took up to 12 days.

Other Toxicity Data: The calculated percutaneous LD50 for 10- to 11-month-old mallard drakes (n = 8) after a 24-h dermal foot exposure is 600 (CL 424–848) mg/kg. Signs observed after dermal treatment included, in addition to several of those reported above, lacrimation, wings spread, using wings to aid pedestrian locomotion, and wing shivers. Mortalities occurred between 5.5 and 21.5 h after the initiation of treatment. Remission took up to 5 days. When the percutaneous LD50 is compared with the acute oral LD50, paraquat dichloride appears to have a moderate degree of dermal hazard in mallards.

Note: For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

Parasporal bodies: see Bacillus thuringiensis (Berlin)
Parathene: see Parathion

PARATHION

Alternative Names: AAT, AC-3422, Alkron, Alleron, American Cyanamid 3422, Apilamite, BAY E-605, Bladan, Corothion, DNP, E-605, ENT 15108, ethyl parathion, Etillon, Folidol, Fosfino 50, Niran, Nitrostigmine, Orthophas, Panthion, Paramar, Parahlos, Parathene, Parawet, Phoskil, Rhodatox, SNP, Soprafox, Statlon, Thiophos

Chemical Name: Phosphorothioic acid, \(O,O\)-dithyl \(O\)-(4-nitrophenyl) ester (CAS 56-38-2)

Primary Use: Insecticide

Sample Purity: 98.76%, 98.6%, and 99.5%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard 1</td>
<td>20</td>
<td>M</td>
<td>12</td>
<td>2.34 (1.88–2.92)</td>
</tr>
<tr>
<td>Mallard 2</td>
<td>20</td>
<td>F</td>
<td>12</td>
<td>1.44 (1.13–1.83)</td>
</tr>
<tr>
<td>Mallard 3</td>
<td>20</td>
<td>F</td>
<td>15</td>
<td>1.44 (1.16–1.80)</td>
</tr>
<tr>
<td>Mallard duckling (MM)</td>
<td>8</td>
<td>F</td>
<td>1 wk</td>
<td>0.89 (0.770–1.05)</td>
</tr>
<tr>
<td>Sharp-tailed grouse</td>
<td>8</td>
<td>M</td>
<td>12–36</td>
<td>5.66 (3.46–9.24)</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>M</td>
<td>5–6</td>
<td>16.9 (12.2–23.5)</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>16</td>
<td>M</td>
<td>2</td>
<td>5.95 (3.38–10.5)</td>
</tr>
<tr>
<td>Phasian 1</td>
<td>12</td>
<td>M</td>
<td>2–3</td>
<td>12.4 (10.1–15.2)</td>
</tr>
<tr>
<td>Phasian 2</td>
<td>22</td>
<td>M</td>
<td>12</td>
<td>>24.0 (10.1–15.2)</td>
</tr>
<tr>
<td>Chukar 1</td>
<td>24</td>
<td>M,F</td>
<td>3–24</td>
<td>24.0 (16.0–34.2)</td>
</tr>
<tr>
<td>Gray partridge</td>
<td>8</td>
<td>M</td>
<td>3–10</td>
<td>16.0 (8.0–32.0)</td>
</tr>
<tr>
<td>Rock dove 1</td>
<td>12</td>
<td>M,F</td>
<td>–</td>
<td>2.52 (1.82–3.50)</td>
</tr>
<tr>
<td>House sparrow</td>
<td>12</td>
<td>M</td>
<td>–</td>
<td>3.36 (2.43–4.66)</td>
</tr>
<tr>
<td>Mule deer 1</td>
<td>2</td>
<td>M</td>
<td>9–10</td>
<td>22.0 (14.0–34.0)</td>
</tr>
<tr>
<td>Domestic goat</td>
<td>2</td>
<td>F</td>
<td>12–72</td>
<td>28.0 (18.0–56.0)</td>
</tr>
</tbody>
</table>

*Excluding as noted.
*These birds were in active breeding condition.

Signs of Intoxication: Lacrimation, tachypnea, dyspnea, asynery, tenesmus, diarrhea, paresis, tremors, prosstration, convulsions, opisthotonos. Mortalities occurred as soon as 30 min or as late as 13 days after single oral administration.

Other Toxicity Data: An estimation of the 30-day EMLD for gray partridges (n = 2) appears to be about 3.0–6.0 mg/kg per day, and that for fulvous whistling-ducks (n = 2) is about 0.01–0.02 mg/kg per day.

In 60-day feeding studies, 1.5 ppm parathion in the diet was not lethal to fulvous whistling-ducks (n = 2), but 8.0 ppm was lethal to one of the two gray partridges tested.

The calculated percutaneous LD50 for 10-month-old mallard drakes (n = 8) after a 24-h dermal foot exposure is 28.3 [20.0–40.0] mg/kg. Signs observed after dermal treatment included, in addition to several of the above, penile extrusion in two of the dead birds. Mortalities occurred 3–21.5 h or 43–50 h after the initiation of treatment. When the percutaneous LD50 is compared with the acute oral LD50 for mallard drakes of similar age,
Parathion appears to have a relatively low degree of percutaneous hazard in mallards.

Notes: For a discussion of the comparative toxicity of parathion, see Tucker and Haegerle (1971).

For additional data and a discussion of the effects of age on the sensitivity of mallards to parathion, see Hudson et al. (1972).

For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

For data and discussion on the effects of parathion on eggshell thickness in mallards and coturnix, see Haegerle and Tucker (1974).

Parathion-methyl: see methyl parathion
Parawet: see parathion
Partron M: see methyl parathion
Parzate: see nabam, zineb
Parzate C: see zineb
Parzate zineb: see zineb
Payze: see cyanazine
PCB's: see polychlorinated biphenyls

PCNB

Alternative Names: Avicol, Botrilex, Brassicol, Folosan, Kobutol, PKHB, quintozene, terrachlor, Teraclor, Terra-Coat LT-2, Terra-Coat L-205, Tilcarex, Tri-PCNB, Tritisan

Chemical Name: Pentachloronitrobenzene (CAS 82-68-8)

Primary Use: Soil fungicide, seed dressing fungicide

Sample Purity: 99%

Acute Oral Toxicity Summary

Test animal	No.	Sex	Age (months)	LD50 (mg/kg)	95%CL
Mallard	16	F	3	380	(205-704)
Pheasant	9	F	3-6	504	(343-743)

Signs of Intoxication: Polydipsia and regurgitation (in mallards), tachypnea, wing shivers or twitching, jerkiness, shakiness, ataxia, imbalance, tremors, and spasms. Signs appeared as soon as 10 min and mortalities in mallards usually occurred between 2 and 24 h after treatment and in pheasants between 3 and 5 days after treatment. However, one pheasant died after about 3 h and one died between 10 and 12 days after treatment. Remission took up to 2 weeks.

Penchloral: see PCP
Penite: see sodium arsenite
Pennamine D: see 2,4-D
Penta: see PCP
Pentachlorin: see DDT
Pentacon: see PCP
Penta General Weed Killer: see PCP
Penvar: see PCP
Perfekthion: see dimethoate
Pestox 3: see schradan
Pestox III: see schradan
PH 60-40: see difluorlon
Phaltan: see folpet
Phenacide: see toxaphene
Phenamiphos: see Nemacur
Phenatox: see toxaphene
Phenmad: see PMA
Pherocon GM: see disparlure
Pheromone: see disparlure, grandlure
Phix: see PMA

PCP

Alternative Names: Chlorophen, Dowicide G, Dowicide 7, Ontrack WE-1, penchlorol, penta, Pentacon, Penta General Weed Killer, Penvar, Santobrite, Santophen, Sinituho, sodium pentachlorphenate, Weedone

Chemical Name: Pentachlorophenol (CAS 87-86-5)

Primary Use: Insecticide, fungicide, molluscicide, defoliant, herbicide, wood preservative

Sample Purity: 99.6%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>F</td>
<td>3</td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant</td>
<td>3</td>
<td>F</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, tenseness, jerkiness, jitteriness, hyperreactibility, slow and disoriented reactions, goose-stepping ataxia, and sitting. After treatment, signs appeared as soon as 1 h in mallards and as soon as 3 days in pheasants. Remission took up to 15 days in mallards and 7 days in pheasants.

PHORATE

Alternative Names: 3911, AC-3911, American Cyanamid 3911, ENT 24042, Experimental Insecticide 3911, Granutox, L-11/6, Rampart, Thimet, timet
Chemical Name: Phosphorothioic acid, O,O-diethyl S-([ethylthio) methyl] ester (CAS 298-02-2)

Primary Use: Insecticide

Sample Purity: 98.8%¹ and 88%²

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD₅₀ 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog¹</td>
<td>16</td>
<td>F</td>
<td>–</td>
<td>85.2 (59.3–122)</td>
</tr>
<tr>
<td>Mallard¹</td>
<td>12</td>
<td>F</td>
<td>3–4</td>
<td>0.616 (0.367–1.03)</td>
</tr>
<tr>
<td>Mallard²</td>
<td>12</td>
<td>F</td>
<td>12</td>
<td>2.55 (2.02–3.21)</td>
</tr>
<tr>
<td>Pheasant¹</td>
<td>12</td>
<td>F</td>
<td>3</td>
<td>7.12 (4.94–10.3)</td>
</tr>
<tr>
<td>Chukar¹</td>
<td>8</td>
<td>F</td>
<td>3</td>
<td>12.8 (3.20–51.2)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, diarrhea, beak-sharpening reflex, polydipsia, lacrimation, loss of righting reflex, immobility, irregular heart and respiratory rates, tremors, wing-beat convulsions or opisthotonos. Levels as low as 0.09 mg/kg produced signs in mallards. This was an extremely fast-acting compound on all species tested. Signs occurred in pheasants as soon as 3 min after treatment. Mortalities usually occurred between 10 min and 4 h after treatment. Remission took up to 2 days.

Other Toxicity Data: The 30-day EMLD for the 98.8% sample for 5- to 6-month-old pheasants of both sexes (n = 12) appears to lie between 3.50 and 7.00 mg/kg per day. The resulting cumulative toxicity index is 7.12/3.50–7.00 = 1.0–2.3, indicating little or no cumulative action for phorate in pheasants.

The calculated percutaneous LD₅₀ for the 88% sample for 1-year-old mallard hens (n = 8) after a 24-h dermal foot exposure is 203 (CL 149–276) mg/kg. Mortalities occurred between 19.5 and 24 h after the initiation of treatment. When the percutaneous LD₅₀ is compared with the acute oral LD₅₀ for mallards of the same age, phorate appears to have a very low degree of dermal hazard in mallards.

Notes: Acetylcholinesterase activity measurements were made on the brains of pheasant mortalities and survivors sacrificed on the day following the final dosage in the 30-day EMLD studies. When compared with their controls (n = 6, ΔpH/45 min = 1.33, s = 0.029, range = 1.299–1.366), survivors showed 58.7% inhibition (n = 6, ΔpH/45 min = 0.550, s = 0.119, range = 0.422–0.741). When compared with their controls (n = 6, ΔpH/45 min = 1.097, s = 0.068, range = 0.996–1.159), mortalities showed 96.3% inhibition (n = 6, ΔpH/45 min = 0.041, s = 0.020, range = 0.023–0.080).

For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

PHOSPHAMIDON

Alternative Names: C-570, Dimecron, ENT 25515, ML-97, OR-1911

Chemical Name: Phosphoric acid, 2-chloro-1-((dimethylamino)-1-methyl-3-oxo-1-propenyl dimethyl ester (CAS 297-99-4)

Primary Use: Insecticide, acaricide

Sample Purity: 80%,¹ 85%²

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD₅₀ 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard (st)¹</td>
<td>12</td>
<td>F</td>
<td>3</td>
<td>3.81 (2.91–5.00)</td>
</tr>
<tr>
<td>Sharp-tailed grouse²</td>
<td>4</td>
<td>M</td>
<td>12–24b</td>
<td>1.50–3.00</td>
</tr>
<tr>
<td>Japanese quail (st)²</td>
<td>8</td>
<td>F</td>
<td>A</td>
<td>3.60 (1.80–7.20)</td>
</tr>
<tr>
<td>Pheasant (st)²</td>
<td>12</td>
<td>F</td>
<td>4</td>
<td>4.24</td>
</tr>
<tr>
<td>Chukar¹</td>
<td>9</td>
<td>M,F</td>
<td>3–5</td>
<td>11.8 (3.37–5.34)</td>
</tr>
<tr>
<td>Rock dove¹</td>
<td>3</td>
<td>M,F</td>
<td>–</td>
<td>2.11–3.66</td>
</tr>
<tr>
<td>White-winged dove (st)¹</td>
<td>8</td>
<td>M,F</td>
<td>A</td>
<td>2.93 (2.44–3.66)</td>
</tr>
<tr>
<td>Albino rat (st)¹</td>
<td>8</td>
<td>M</td>
<td>–</td>
<td>11.0 (9.39–12.8)</td>
</tr>
<tr>
<td>Mule deer (st)¹</td>
<td>3</td>
<td>M,F</td>
<td>24–36</td>
<td>44.0–88.0</td>
</tr>
</tbody>
</table>

¹ Except as noted.
² These birds may have been in breeding condition.
³ These birds may have been in breeding condition.

Signs of Intoxication: Lacrimation, foamy salivation, miosis, wing-drop, tachypnea, dyspnea, ataxia, immobility, convulsions, tetany, and opisthotonos. Signs appeared as soon as 6 min and mortalities usually occurred...
between 8 and 30 min after treatment. Remission took up to 1 day.

Other Toxicity Data: Phosphamidon applied to the scales of the legs or to the eyes of birds was rapidly toxic, but phosphamidon sprayed on dry feathers did not produce substantial intoxication.

The calculated percutaneous LD50 for the 85% sample for 1-year-old mallard hens (n = 8) after a 24-h dermal foot exposure is 26.0 (CL 5.25-129) mg/kg. Signs observed after dermal treatment included, in addition to several of those reported above, high carriage, hyporeactivity, using wings to aid pedestrian locomotion, nasal exudate, wings spread, spasms, tremors, and ataxia. Mortalities usually occurred between 5 and 24 h after the initiation of treatment; however, one hen died overnight after the end of the 24-h exposure. Remission took up to 4 days after treatment ended. When the percutaneous LD50 is compared with the acute oral LD50, phosphamidon appears to have a slight to moderate degree of dermal hazard in mallards.

A female bullfrog placed in aqueous solutions up to 250 ppm survived a 17-day exposure at the highest treatment level (250 ppm). (By way of comparison, a few nanoliters are lethal to certain crustaceans and 5 to 10 ppm are lethal to several types of fish.)

Repeated acute oral LD50 determinations with rats, using a stock 1:400 aqueous solution of phosphamidon containing 1,000 mg/L Yuma Chemical “Spreader A,” showed that the potency of the solution after 41 days was about half that of the fresh solution.

Notes: The early appearance of signs and the steepness of the acute dose-response curves (increasing dosage levels produced disproportionately large increases in the response) indicate that phosphamidon is rapidly and thoroughly taken up from the gastrointestinal tracts of birds.

For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

Phosphorodithioic acid: see ethion

Phosmethion: see malathion

Phosvel: see leptophos

Phosvit: see DDVP

Sample Purity: 73%

<table>
<thead>
<tr>
<th>Acute Oral Toxicity Summary</th>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>546 (314-950)</td>
</tr>
<tr>
<td></td>
<td>Sharp-tailed grouse</td>
<td>12</td>
<td>F</td>
<td>6</td>
<td>35.7 (25.7-49.4)</td>
</tr>
<tr>
<td></td>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>46.9 (33.8-65.0)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Polydipsia and regurgitation (in mallards), ataxia, hyperexcitability, goose-stepping ataxia, running and falling, phonation, high carriage, slowness, asthenia, wing-drop, tremors, tachypnea, dyspnea, falling, wing-beat convulsions, immobility, wings spread, tetany, and opisthotonos. Treatment levels as low as 15.6 mg/kg produced toxic signs in mallards. Signs appeared as soon as 5 min and mortalities usually occurred between 30 min and 4 h after treatment; however, one mallard died 13 days after treatment. Remission took up to 20 days.

Other Toxicity Data: The 30-day EMLD for 5- to 6-month-old mallards of both sexes (n = 12) appears to be less than 2.50 mg/kg per day. The resulting cumulative toxicity index is $546 < 2.50 = > 218$, indicating an extremely high degree of cumulative action for phoxim in mallards, even when regurgitation of acute dosages is taken into account.

Note: Gross necropsies of mortalities and sacrificed survivors of the 30-day pheasant study revealed small spleens.

Phoxime: see phoxim

Phthalophos: see Imidan

Phygon: see dichlone

Phygon XL: see dichlone

Phygon Seed Protectant: see dichlone

Phytar 560: see Silvisar-510

Phytosol: see trichloronat

PHOXIM

Alternative Names: BAY 77488, Baythion, ENT 27448, phoxime, Valexon, Volaton

Chemical Name: 4-Ethoxy-7-phenyl-3,5-dioxo-6-aza-4-phosphoacet-6-ene-8-nitrile, 4-sulfide (CAS 14816-18-3)

Primary Use: Insecticide

PICLORAM

Alternative Names: Borolin, Tordon

Chemical Name: 4-Amino-3,5,6-trichloro-2-pyridinecarboxylic acid (CAS 1918-02-1)

Primary Use: Herbicide

Sample Purity: 90.5%1 and Tordon 22K formulation2
Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard¹</td>
<td>3</td>
<td>M</td>
<td>3</td>
<td>>2,000</td>
</tr>
<tr>
<td>Mallard (st)²</td>
<td>1</td>
<td>M</td>
<td>7</td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant¹</td>
<td>3</td>
<td>M</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation occurred soon after treatment in the mallards. Pheasants showed only mild ataxia and fasciculation following treatment.

Other Toxicity Data: Combinations of 1,000 mg/kg picloram³ and 1,000 mg/kg 2,4-D amine or 2,000 mg/kg of each administered by stomach tube were not lethal to two mallard drakes.

PKhNB: see PCNB

PLANAVIN

Alternative Names: nitratin (proposed), SD 11831

Chemical Name: 4-(Methylsulfonyl)-2,6-dinitro- N, N-di-propyl benzenamine (CAS 4726-14-1)

Primary Use: Herbicide

Sample Purity: Technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>878</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3</td>
<td>169</td>
</tr>
</tbody>
</table>

Sample Purity: 100%

Signs of Intoxication: Ataxia, flushed feathers, goose-stepping ataxia, imbalance, tenseness, slowness, ataraxia, falling, withdrawal, hyporeactivity, hypoactivity, and ptosis. Signs appeared as soon as 20 min in mallards and 2.5 h in pheasants and mortalities usually occurred between 4-20 h and 2 days in mallards and between 2 and 6 days after treatment in pheasants. Remission took up to 7 days.

Other Toxicity Data: The 30-day EMLD for 5- to 6-month-old pheasants of both sexes (n = 12) appears to be greater than 18.0 mg/kg per day. The resulting cumulative toxicity index is 169 />18.0 = <9.4, indicating a relatively slight degree of cumulative action for PMA in pheasants, in comparison with other mercurial pesticides.

Notes: Several interesting comparisons of mercurial toxicity are made possible by conversions of the toxicity values of mercurial compounds to toxicity figures for actual metallic mercury (Hg) in those compounds. The ethyl and methyl mercurial pesticides, when converted in this manner, show surprising similarity of toxicity. For instance, the acute oral LD50 for Ceresan L in ring-necked pheasant cocks is 1,190 mg/kg, which is equivalent to 26.8 mg/kg Hg. The acute oral LD50 for Ceresan M in pheasant hens is 360 mg/kg, which is equivalent to 11.5 mg/kg Hg. The acute oral LD50 for Panogen in pheasant cocks is 566 mg/kg, which is equivalent to 23.8 mg/kg Hg. The acute oral toxicity of Ceresan L in mallards is high because of regurgitation; however, when dosed subacutely, the total accumulation of metallic mercury that killed half of the test group was equivalent to 22.5 mg/kg Hg, which is very close to the median lethal acute dosage for pheasants. This finding indicates a high degree of cumulative action for Ceresan L (an ethyl mercury pesticide) in mallards.

A phenyl mercury compound, PMA, appears to be much less toxic, on the basis of metallic mercury, than the ethyl or methyl mercury compounds. As shown in the summary, the acute oral LD50 for PMA in pheasant hens is 169 mg/kg, which is equivalent to 101 mg/kg Hg. The group of pheasants treated with 18.0 mg/kg per day survived a total administration of 540 mg/kg PMA, which is
POLYCHLORINATED BIPHENYLS

Alternative Names: Aroclor (several products), chlorinated biphenyls, PCB's

Chemical Name: Various polychlorinated biphenyl mixtures

Primary Use: Industrial, such as plasticizers, heat-exchange agents; have become widespread environmental contaminants

Sample Purity: Four mixtures designated Aroclor 1242, 1254, 1260, and 1268 (the last two digits of each number indicate percent chlorine in the sample)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard1</td>
<td>3</td>
<td>M</td>
<td>8-9a</td>
<td>>2,000</td>
</tr>
<tr>
<td>Mallard2</td>
<td>3</td>
<td>M</td>
<td>8-9a</td>
<td>>2,000</td>
</tr>
<tr>
<td>Mallard3</td>
<td>3</td>
<td>M</td>
<td>8-9a</td>
<td>>2,000</td>
</tr>
<tr>
<td>Mallard4</td>
<td>3</td>
<td>M</td>
<td>8-9a</td>
<td>>2,000</td>
</tr>
<tr>
<td>Bobwhite4</td>
<td>3</td>
<td>M</td>
<td>12</td>
<td>>2,000</td>
</tr>
<tr>
<td>Albino rat (st)2</td>
<td>6</td>
<td>M</td>
<td>-</td>
<td>841 (500-1,410)</td>
</tr>
<tr>
<td>Albino rat (st)4</td>
<td>10</td>
<td>M</td>
<td>-</td>
<td>2,000-4,000</td>
</tr>
</tbody>
</table>

*These drakes may have been in breeding condition.

Signs of Intoxication: Mallards showed no signs. Bobwhites showed jitteriness and ataxia. Rats treated with Aroclor 1254 showed ataxia, blanched retinas, ptosis, serous nasal exudate that appeared porphyrin-like, withdrawal, lack of preening. Rats treated with Aroclor 1268 showed reddish exudate on eyelids, ataxia, ptosis, possible blindness, withdrawal. Rat mortalities occurred between 4 h and 4 days after treatment. Some survivors showed signs for as long as 8 days. Treatment levels as low as 100 mg/kg Aroclor 1254 produced one rat mortality.

Other Toxicity Data: Two male albino rats received 75 mg/kg per day of Aroclor 1268 in corn oil administered by stomach tube for 6 days; one died on the 7th day. Two male rats were similarly treated with Aroclor 1254 and both survived. In a feeding study, Aroclor 1254 at 1,000 ppm was lethal to none of six male rats by 14 days, one of five by 28 days, three of four by 43 days, and four of four by 53 days. Food consumption was reduced by 21%. A treatment level of 10 ppm produced one death in six male rats at 29 days (possibly not caused by Aroclor intake) but no further mortalities by 45 days. These feeding studies suggest that a total intake of about 500 to 2,000 mg/kg of Aroclor 1254 is the lethal level for dietary exposures of 1 to 7 weeks in rats.

Notes: Gross necropsies in bobwhites revealed gastrointestinal purpura in one bird and gastrointestinal hyperemia in another.

For effects on eggshell thickness, see Haegele and Tucker (1974).

Potassium azide: see toxicology

Polyethal: see methylpolyethal

Polyram-Ultra: see thiram

Polyram Z: see zineb

Pomarsol: see thiram

Pomasol: see thiram

POTASSIUM AZIDE

Alternative Names: Azide, Kazide, Kazoe, PPG-101, Smite

Chemical Name: Potassium azide (CAS 12136-44-6)

Primary Use: Herbicide, fungicide, nematocide, insecticide, bactericide, growth regulator

Sample Purity: ≥98%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3</td>
<td>22.8 (13.6-38.3)</td>
</tr>
<tr>
<td>California quail</td>
<td>15</td>
<td>M</td>
<td>9-10</td>
<td>20.8 (16.5-26.1)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>15.1 (12.0-19.0)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, stumbling, fluffed feathers, falling, sitting, polydipsia, and attempted regurgitation (in mallards), ptosis, ataxia, myasthenia, using wings to aid in and for pedestrian locomotion, mutation, spasms, tremors, immobility, wings spread, phonation, opisthotonos, bradypnea, dyspnea, and terminal wing-beat convulsions. Signs appeared as soon as 5 min and mortalities usually occurred between 15 min and 17 h after treatment. Remission took up to 9 days.

PP-148: see paraquat dichloride

PP-910: see paraquat dichloride
PPG-101: see potassium azide
Prebane: see terbutryn
Preforan: see fluoroiodifen
Premerge: see dinoseb
Preseed: see CHE 1843
Primatol A: see atrazine

PROCESS OIL 492

Alternative Names: None found

Chemical Name: Unknown

Primary Use: Carrier; ingredient in 492 Mosquito Larvicide Oil

Sample Purity: Technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>F</td>
<td>18</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, stumbling. Signs appeared on the day following treatment. Remission took up to 2 days.

Prolate: see Imidan
Propham: see IPC-400
Prophos: see ethoprop
Propoxur: see Baygon
Protex: see rotenone
Proxol: see trichlorfon
Pynamin: see allethrin

PYRETHRUM

Alternative Names: Dalmation Insect Flowers, Insect Flowers, Insect Powder, Trieste Flowers

Chemical Name: A complex of components of the flowers of *Chrysanthemum cinerariaefolium*, including compounds known as pyrethrins I (CAS 121-21-7) and II (CAS 121-21-9) and cinerins I (CAS 25402-06-6) and II (CAS 121-21-0)

Primary Use: Insecticide

Sample Purity: 20%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard (st)</td>
<td>6</td>
<td>F</td>
<td>3-4</td>
<td>>10,000</td>
</tr>
</tbody>
</table>

RE-11775

Alternative Names: None found

Chemical Name: Carbanic acid, methyl(phenylthio-3-(1-methylpropyl)phenyl ester (CAS 25474-41-3)

Primary Use: Experimental mosquito larvicide and adulticide

Sample Purity: 60% Active isomer, 40% other isomers

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>7-9</td>
<td>12.8 (7.37-22.4)</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>F</td>
<td>6-7</td>
<td>103 (79.2-133)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, falling, using wings to aid pedestrian locomotion, penile extrusion (in mallards), immobility, tremors, dyspnea, salivation, wing-beat con-
vulsions, and tetany. Signs appeared as soon as 5 min; mortalities usually occurred between 0.5 and 2 h after treatment. Remission took up to 2 days.

Rebelate: see dimethoate
Reddon: see 2,4,5-T
Reglone: see diquat dibromide
Restox: see coumaphos
Restox: see coumaphos

RESMETHRIN

Alternative Names: benzofulvone, Chryson, cismethrin, d trans isomer = bioresmethrin, FMC-17370, NIA 17370, NRDC 104, SBP-1382, Synthin

Chemical Name: 2,2-Dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic acid, [3-(phenylmethyl)-3-furanyl]methyl ester (CAS 10453-86-8)

Primary Use: Insecticide (synthetic pyrethroid)

Sample Purity: ~100% (≤ 30% cis, ≥ 70% trans)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD$_{50}$ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>California quail</td>
<td>3</td>
<td>M</td>
<td>5–6</td>
<td>≥ 2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: None.

R and H FW-293: see dicofol
Rhodiatox: see parathion
Rothane D-3: see TDE
Riogen: see PMA
Rocul: see Alkerm A-33 Dry
Rogor: see dimethoate

RONNEL

Alternative Names: Dow ET-14, Dow ET-57, Ectoral, ENT 23284, ET-14, ET-57, Etoylene, fenclorfos, fenchlorphos, Koralin, Nankor, Troleene, Viozene

Chemical Name: Phosphorothioic acid, O,O-dimethyl O-(2,4,5-trichlorophenyl) ester (CAS 299-84-3)

Primary Use: Insecticide, acaricide

Sample Purity: 92.5%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD$_{50}$ 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M</td>
<td>3</td>
<td>≥ 2,000</td>
</tr>
</tbody>
</table>

RU 11-679

Alternative Names: bioethanomethrin, ENT 27985B, French pyrethroid, NIA 24110

Chemical Name: 3-(Cyclopentylidenemethyl)-2,2-dimethyl-(1R-trans)-cyclopropanecarboxylic acid, [5-(phenylmethyl)-3-furanyl]methyl ester (CAS 22431-62-5)

Primary Use: Insecticide (synthetic pyrethroid)

Sample Purity: 96%, 1 36% in DOPC (2,6-dioctadecyl-p-cresol)2
Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard¹</td>
<td>33</td>
<td>F</td>
<td>18</td>
<td>>1,600</td>
</tr>
<tr>
<td>Mallard²</td>
<td>11</td>
<td>F</td>
<td>18</td>
<td>>1,600</td>
</tr>
<tr>
<td>California quail¹</td>
<td>16</td>
<td>F</td>
<td>9–11</td>
<td>139 (117–165)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, polydipsia, regurgitation, tremors, wide stance, phonation, circling, spasms, tense-ness, falling, sitting, using wings for pedestrian locomotion, loss of righting reflex, and immobility. Signs appeared as soon as 20 min and mortalities often occurred between 1.5 and 5 h after treatment.

Other Toxicity Data: Although the LD50 for the pure material in mallards is reported as >1,600 mg/kg, mortalities occurred at dosage levels as low as 200 mg/kg.

Notes: Addition of DOPC, an antioxidant, does not appear to enhance the toxicity of RU 11-679 in mallards and California quail.

Gross visual examination of the internal organs of sacrificed mallards revealed small spleens in several birds.

Ruelene: see crufomate
Rukseam: see DDT
Rumetan: see zinc phosphide
Ruphos: see dioxathion
S 276: see disulfoton
S 767: see fensulfothion
S-1102A: see fenitrothion
S 1752: see fenithion
S 4400: see trichloronat
S 5660: see fenitrothion
Salvo: see 2,4-D
Santobrite: see PCP.
Santophen: see PCP
Sapercon: see chlorfenvinphos
Sarolex: see Diazinon
SBP-1382: see resmethrin
SC-110: see PMA

SCHRADAN

Alternative Names: ENT 17291, octamethylpyrophosphoramide, OMPA, Pestox III, Pestox 3, Systam

Chemical Name: Octamethylidiphosphoramide (CAS 152-16-9)

Primary Use: Systemic insecticide

Sample Purity: ≥90%

SD 7727

Alternative Names: None found

Chemical Name: 2,4-Dichlorophenol methanesulfonate (CAS 3687-13-6)

Primary Use: Experimental nematocide

Sample Purity: >95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>36.3 (20.9–63.2)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>19.0 (13.7–26.4)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, falling, high carriage, wing-drop, loss of righting reflex, slowness, fluffed feathers, tetany, ptosis, apnea, immobility, wing-beat convulsions, and opisthotonos. Signs appeared as soon as 17 min and mortalities occurred between 35 and 86 min in mallards and between 27 min and 4.5 days after treatment in pheasants. Remission took up to 1 week.

Scutl: see PMA
SD 3562: see dicrotophos
SD 4294: see crotoloxphos
SD 4402: see isobenzan

SD 7859: see chlorfenvinphos
SD 8447: see tetrachlorvinphos
SD 8530: see Landrin
SD 9098: see Akton
SD 9129: see monocrotophos
SD 11831: see Planavin
SD 14114: see Vendex
SD 15418: see cyanazine
SD 16898

Alternative Names: None found

Chemical Name: Acetic acid, thio-, S-cyanomethyl ester, methylcarbamoyloxime

Primary Use: Experimental insecticide, miticide

Sample Purity: Technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
<th>95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>9-11</td>
<td>7.55</td>
<td>(5.99-9.51)</td>
</tr>
<tr>
<td>Bobwhite</td>
<td>3</td>
<td>F</td>
<td>12-24</td>
<td>6.00-12.0</td>
<td></td>
</tr>
<tr>
<td>Pheasant</td>
<td>3</td>
<td>M</td>
<td>8-10</td>
<td>3.00-6.00</td>
<td></td>
</tr>
<tr>
<td>Chukar</td>
<td>12</td>
<td>M,F</td>
<td>12</td>
<td>5.99</td>
<td>(4.32-8.31)</td>
</tr>
</tbody>
</table>

*Some birds of each species were in breeding condition.

Signs of Intoxication: Ataxia, imbalance, hyporeactivity, sitting, penile extrusion (in mallards), tremors, falling, wing-drop, wings spread, excessive swallowing, ptosis, immobility, tetany, emprosthotonos, and violent wing-beat convulsions. Signs appeared as soon as 2 min and mortalities usually occurred between 20 and 60 min after treatment. Remission had occurred by 1 day after treatment.

SD 17250

Alternative Name: thiocarboxime (proposed)

Chemical Name: (Z)-N-[((methylamino)carbonyl)oxy] ethanimidothioic acid, 2-cyanoethyl ester (CAS 29118-87-4)

Primary Use: Experimental insecticide, miticide

Sample Purity: Technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
<th>95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada goose</td>
<td>12</td>
<td>M,F</td>
<td>A</td>
<td>8.99</td>
<td>(6.49-12.5)</td>
</tr>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>9-11</td>
<td>12.0</td>
<td>(9.51-15.1)</td>
</tr>
<tr>
<td>Bobwhite</td>
<td>3</td>
<td>F</td>
<td>24</td>
<td>15.0-37.9</td>
<td>~ 26</td>
</tr>
<tr>
<td>California quail</td>
<td>31</td>
<td>M,F</td>
<td>12</td>
<td>4.00-8.00</td>
<td></td>
</tr>
<tr>
<td>Pheasant</td>
<td>3</td>
<td>M</td>
<td>8-10</td>
<td>4.00-8.00</td>
<td></td>
</tr>
</tbody>
</table>

*Except as noted. Some birds of each species were in the early stages of gonadal reproductive development.

Signs of Intoxication: Ataxia, regurgitation, imbalance, and slowness. Signs appeared as soon as 20 min and remission took up to 1 day for most birds, but one bird showed signs for up to 10 days.

Seedrin: see aldrin
Selinon: see DNOC
Sendran: see Baygon
Septene: see carbaryl
Sevin: see carbaryl
Sevin-4-Oil: see carbaryl
Shell Oil Herder: see Oil Herder
Shell Oil Herder #2: see Oil Herder #2

SHELL SOL 70

Alternative Names: None found

Chemical Name: A solvent composed of 98.2% paraffins and 0.9% naphthenes

Primary Use: Industrial solvent, cleansing agent for oil-soaked birds
Sample Purity: Technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard (MM; st)</td>
<td>10</td>
<td>M</td>
<td>4-5</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Slowness. Signs appeared as soon as 1.5 h after treatment, and remission took up to 2 days.

Other Toxicity Data: No mortality occurred in a group of six 5-month-old mallard (MM) drakes exposed to the compound by immersion of the whole body, so the feathers were completely wetted. This manner of exposure was designed to simulate the use of the chemical for removing oil from an oil-soaked bird. Approximately 4 L of the solvent were placed in a pail; each bird was immersed, except for the head, in the solvent and the feathers were rubbed vigorously. After the bird was removed from the pail, hand pressure was applied to the feathers in an attempt to remove as much solvent from the soaked feathers as possible. Three of the six birds were then placed in an indoor pen and the other three were placed in an outdoor pen. Weather conditions in the outdoor pen during the initial period of the test were relatively severe: on the 1st and 2nd days of the test, low ambient temperature was 3.5°C; ambient temperature dropped to −1°C on the 3rd day and for the next 3 days the temperature did not rise above the freezing point—about 7-10 cm of snow was on the ground and the low ambient temperature dropped to −10°C.

Although no mortalities occurred, clinical signs of intoxication were severe. Signs included ataxia, goose-stepping ataxia, falling, sitting, backing, falling on tails, regurgitation, ptosis, alternating lethargy and alertness, hyporeactivity, ataxia, possible exophthalmia, and unkemptness. Signs appeared as soon as 20 min after treatment and ataxia persisted for up to 1 day after treatment in several birds. Although the feathers were completely soaked with the solvent, there appeared to be no tendency for the feathers to become water-soaked, and before clinical signs appeared, the birds were able to swim normally and at the proper level in the water. On the day following treatment, the feathers of all birds appeared to be normal (except for a slight degree of unkemptness) and there still appeared to be no tendency for them to become water-soaked. However, 8 days after treatment it was noticed that the birds had been losing feathers, and on examination it was noted that the feathers of all birds could be plucked much more easily than normal. Breast feathers and those on the sides of the body, covering the pectoralis muscles, seemed to be the most susceptible to plucking. The epidermal surface showed moderate irritation with mild erythema and eschar formation. Three days later (11 days after treatment) there was eschar formation over the irritated areas, and the feathers seemed to pluck less easily. In areas where the skin irritation was less severe, there was still eschar formation but no scab formation. Refeathering of the bare areas had progressed well by 22 days after treatment.

The three indoor birds were placed outdoors with the other three birds on the 22nd day after treatment and observation of these birds was continued for 1 year to check for signs of abnormalities that might occur during the molting period. Except for one bird, which died from causes probably not related to chemical exposure about 6 months later, the birds appeared normal throughout the observation period, and all went through the spring and fall molts successfully. All were in good plumage and all had gained about 200 g body weight when the study ended.

Shimmerex: see PMA
Short-stop E: see terbutryn
Shoxin: see norbormide
Silvanol: see lindane

SILVEX

Alternative Names: Aqua-Vex; Ded-Weed; fenoprop; Frutolone T; Garlon; Kuron; Kurosan; Kuton; 2,4,5-TP

Chemical Name: 2-(2,4,5-Trichlorophenoxy)-propanoic acid (CAS 93-72-1)

Primary Use: Herbicide

Sample Purity: Analytical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>6</td>
<td>F</td>
<td>3</td>
<td>>2,000</td>
</tr>
<tr>
<td>Mule deer</td>
<td>1</td>
<td>F</td>
<td>42</td>
<td><400</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Mallards—ataxia, imbalance and tremors; deer—tensionness, jitteriness, and anorexia. Signs appeared in mallards as soon as 45 min and remission took up to 4 days. The doe died during the night after treatment.

Notes: Gross necropsy of the dead deer revealed severely hemorrhagic small intestine, hemorrhagic abomasus, hydropneumoccardium, coronary band petchiation, endocardial petchiation, lungs with interstitial emphysema, and trachea and bronchi filled with fluid from the rumen.

SILVISAR-510

Alternative Names: Arsan, Phytar 560, Rad-E-Cate 35
Chemical Name: Mixture of cacodylic acid (dimethylarsinic acid) and triethanolamine cacodylate (CAS 75-60-5)

Primary Use: Herbicide, silvicide (tree killer)

Sample Purity: 54.3%, total As = 27.14% (cacodylic acid 46.0%, triethanolamine cacodylate 8.3%)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD<sub>50</sub> (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard (st)</td>
<td>9</td>
<td>F</td>
<td>3-4</td>
<td>>2,400</td>
</tr>
<tr>
<td>Chukar (st)</td>
<td>6</td>
<td>M,F</td>
<td>4</td>
<td>≥2,000</td>
</tr>
<tr>
<td>Mule deer (st)</td>
<td>1</td>
<td>F</td>
<td>15</td>
<td>>320</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation and polydipsia (in mallards), ataxia, falling, using the wings to aid pedestrian locomotion, asthenia, and anorexia (in deer). Signs appeared as soon as 10 min and mortalities occurred between 1 and 2 days after treatment. Remission took up to 1 month.

Note: For data and discussion on the effects of sodium arsenite on eggshell thickness in mallards, see Haegle and Tucker (1974).

Sodium fluoroacetate: see sodium monofluoroacetate

SODIUM MONOFLUOROACETATE

Alternative Names: 1080, Compound 1080, fratal, monosodium fluoroacetate, sodium fluoroacetate, ten-eighty

Chemical Name: Sodium monofluoroacetate

Primary Use: Mammal control agent, rodenticide

Sample Purity: ≥90%, 95.5-98.6%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD<sub>50</sub> 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog<sup>1</sup></td>
<td>12</td>
<td>M</td>
<td>--</td>
<td>54.4 (25.6-115)</td>
</tr>
<tr>
<td>Mallard (st)<sup>1</sup></td>
<td>20</td>
<td>M</td>
<td>3</td>
<td>9.11 (5.60-14.6)</td>
</tr>
<tr>
<td>Mallard duckling (st)<sup>1</sup></td>
<td>20</td>
<td>M</td>
<td>1 wk</td>
<td>5.97 (4.25-8.39)</td>
</tr>
<tr>
<td>Golden eagle<sup>1</sup></td>
<td>6</td>
<td>M,F</td>
<td>--</td>
<td>3.54 (0.498-25.1)</td>
</tr>
<tr>
<td>California quail (st)<sup>2</sup></td>
<td>12</td>
<td>F</td>
<td>18</td>
<td>4.63 (2.66-8.05)</td>
</tr>
<tr>
<td>Japanese quail (st)<sup>1</sup></td>
<td>20</td>
<td>M,F</td>
<td>3<sup>b</sup></td>
<td>12.8 (7.23-22.8)</td>
</tr>
<tr>
<td>Pheasant (st)<sup>1</sup></td>
<td>12</td>
<td>M</td>
<td>2-3</td>
<td>6.49 (3.85-10.8)</td>
</tr>
<tr>
<td>Chukar (st)<sup>1</sup></td>
<td>20</td>
<td>M,F</td>
<td>3</td>
<td>3.51 (2.58-4.78)</td>
</tr>
<tr>
<td>Turkey<sup>1</sup></td>
<td>10</td>
<td>F</td>
<td><6</td>
<td>4.76 (1.19-19.0)</td>
</tr>
<tr>
<td>Rock dove (st)<sup>1</sup></td>
<td>12</td>
<td>M,F</td>
<td>--</td>
<td>4.24 (3.36-5.34)</td>
</tr>
<tr>
<td>Mourning dove (st)<sup>1</sup></td>
<td>13</td>
<td>M,F</td>
<td>--</td>
<td>8.55-14.6</td>
</tr>
<tr>
<td>House sparrow (st)<sup>1</sup></td>
<td>12</td>
<td>M</td>
<td>A<sup>b</sup></td>
<td>3.00 (2.38-3.78)</td>
</tr>
</tbody>
</table>

*These cocks were in good breeding condition.

Signs of Intoxication: Ataxia, goose-stepping ataxia, asthe-
Test animal No. Sex Age (months) LD50 95%CL (mg/kg)

<table>
<thead>
<tr>
<th>Domestic ferret (50)</th>
<th>8 M ~12</th>
<th>1.41 [1.00-2.00]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mule deer</td>
<td>6 M</td>
<td>8-11</td>
</tr>
</tbody>
</table>

*Except as noted.
*bThese birds may have been in breeding condition.

Signs of Intoxication:
Respiratory, central nervous system, and muscle effects such as dyspnea, ataxia, weakness, tremors, convulsions. Ferrets additionally displayed muscularic and cardiac effects, i.e., signs indicative of stimulation of the parasympathetic nervous system, including increased salivation, urination, and defecation, with eventual cardiac failure. The time between treatment and death was relatively constant in all species, from 1 h to 1 day, with few exceptions.

Other Toxicity Data:
The 30-day EMLD for mallards (n = 3 M, 3 F) is 0.5 mg/kg per day. The resulting cumulative toxicity index is 9.11/0.5 = 18.2, indicating a moderate to high degree of cumulative action for this species.

To determine the secondary hazard of 1080, ferrets (n = 5) were fed one white-footed mouse per ferret. The mice had been treated with sodium monofluoroacetate at dosage levels based on the body weight of the ferret to which it was to be fed (i.e., the mice received toxicant at 1, 2, 4, or 8 mg/kg of ferret body weight). In this way, if all of the offered mice were eaten by the ferret, the ferret would receive a dosage of 1, 2, 4, or 8 mg/kg. The ferrets had been fasted 1-3 days, and were given the mice either dead or alive between 1 and 2 h after the mice had been dosed. The mice were completely consumed within 10-15 min. The only ferret that survived this treatment had received one of the two mice dosed at 2 mg/kg. Thus, it appears that sodium monofluoroacetate has a high degree of secondary toxicity in mammals.

Notes:
For a discussion of the comparative toxicity of sodium monofluoroacetate, see Tucker and Haegele (1971).

For data and discussion on the effects of age on the sensitivity of mallards to sodium monofluoroacetate, see Hudson et al. (1972).

STRYCHNINE

Alternative Names: dog button, Nux vomica, poison nut, Quaker button, strychnine alkaloid, strychnine sulfate, *Strychnos nux-vomica, strychnos*

Chemical Name: An alkaloid extract of the seeds of *Strychnos nux-vomica; strychnidin-10-one (CAS 57-24-0)*; strychnidin-10-one, sulfate (2:1) (CAS 64-41-3)
Primary Use: Bird and mammal control agent, rodenticide

Sample Purity: 98% N.F./strychnine alkaloid, and U.S.P. strychnine sulfate

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog¹</td>
<td>4</td>
<td>M</td>
<td>—</td>
<td>2.21 [1.56–3.12]</td>
</tr>
<tr>
<td>Mallard duckling¹</td>
<td>20</td>
<td>—</td>
<td>36 h</td>
<td>2.62 (1.94–3.55)</td>
</tr>
<tr>
<td>Mallard duckling¹</td>
<td>20</td>
<td>—</td>
<td>1 wk</td>
<td>2.00 (1.51–2.65)</td>
</tr>
<tr>
<td>Mallard¹</td>
<td>15</td>
<td>—</td>
<td>1</td>
<td>5.88 (3.23–10.7)</td>
</tr>
<tr>
<td>Mallard¹</td>
<td>16</td>
<td>M,F</td>
<td>6</td>
<td>2.83 [2.00–4.00]</td>
</tr>
<tr>
<td>Mallard¹</td>
<td>20</td>
<td>M,F</td>
<td>6</td>
<td>2.27 (1.26–4.11)</td>
</tr>
<tr>
<td>Golden eagle¹</td>
<td>3</td>
<td>M</td>
<td>—</td>
<td>4.80–8.10</td>
</tr>
<tr>
<td>Golden eagle¹</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>5.00–10.0</td>
</tr>
<tr>
<td>California quail¹</td>
<td>9</td>
<td>M</td>
<td>5–6</td>
<td>112 (51.6–243)</td>
</tr>
<tr>
<td>Japanese quail¹</td>
<td>24</td>
<td>F</td>
<td>28</td>
<td>22.6 (11.9–42.9)</td>
</tr>
<tr>
<td>Pheasant¹</td>
<td>12</td>
<td>M</td>
<td>12–24c</td>
<td>24.7 (14.4–42.2)</td>
</tr>
<tr>
<td>Pheasant (st)¹</td>
<td>12</td>
<td>M</td>
<td>2</td>
<td>8.48 (4.41–16.3)</td>
</tr>
<tr>
<td>Chukar¹</td>
<td>8</td>
<td>M,F</td>
<td>5–7</td>
<td>16.0 (8.0–32.0)</td>
</tr>
<tr>
<td>Rock dove¹</td>
<td>12</td>
<td>M,F</td>
<td>—</td>
<td>21.3 (16.9–26.9)</td>
</tr>
<tr>
<td>Mourning dove (st)²</td>
<td>9</td>
<td>M,F</td>
<td>J</td>
<td>>5.12 (3.18–5.50)</td>
</tr>
<tr>
<td>House sparrow¹</td>
<td>20</td>
<td>M</td>
<td>— d</td>
<td>4.18 (3.18–5.50)</td>
</tr>
<tr>
<td>House sparrow (st)²</td>
<td>6</td>
<td>F</td>
<td>—</td>
<td>4.00–8.00</td>
</tr>
<tr>
<td>Mule deer¹</td>
<td>5</td>
<td>F</td>
<td>8–11</td>
<td>17.0–24.0</td>
</tr>
</tbody>
</table>

¹Except as noted.
²Some of these hens were laying eggs.
³These cocks were in breeding condition.
⁴These sparrows may have been in breeding condition.

Signs of Intoxication: Feathers fluffed or held tightly against body, low or high carriage, ataxia or asynery, fasciculation, wing-drop, tails pointed down, salivation, tremors, hyperacusis, muscle tenseness, recurring convulsions or tetanic seizures, anorexia, tachycardia, immobility, violent convulsions or opisthotonos. During the early and middle stages of intoxication, slight touch, light, or sound stimuli produced exaggerated responses and often seizures. Signs appeared as soon as 10 min and mortalities usually occurred between 1 and 5 h after treatment; however, deer mortalities occurred as late as 4 days and California quail mortalities as late as 7 days after treatment. Except in cases of delayed mortality, remission had usually occurred by several hours after treatment.

Notes: To convert strychnine alkaloid figures to strychnine sulfate figures, multiply the alkaloid figures by 1.28 (molecular weight of the sulfate + 2 + molecular weight of the alkaloid = 1.2813). If the toxicity of strychnine were proportional to the amount of alkaloid present, this factor would predict the toxicity of the sulfate from that of the alkaloid. This relation apparently does not always hold true, as can be seen by comparing the LD50's for pheasants with the two formulations.

For a discussion of the comparative toxicity of strychnine, see Tucker and Haegele (1971).

Strychnine alkaloid: see strychnine
Strychnine sulfate: see strychnine
Strychnos: see strychnine
Strychnos nux-vomica: see strychnine
Subitex: see dinoseb
Substituted naphthalenes: see Panasol AN-2
Sulfox-Cide: see sulfoxide

SULFOXIDE

Alternative Names: ENT 16634, n-octyl sulfoxide of isosafrole, Sulfox-Cide, sulfoxyl

Chemical Name: 5-[2-(octylsulfinyl)propyl]-1,3-benzodioxole (CAS 120-62-7)

Primary Use: Pesticide synergist

Sample Purity: 88%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M</td>
<td>3–4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Weakness, goose-stepping ataxia, ataxia, occasional stumbling or falling, wings held very high on body. Signs were seen as soon as 25 min after treatment and persisted for up to 14 days.

Sulfoxyl: see sulfoxide
Sumithion: see fenitrothion
Sumitomo: see fenitrothion
Sundice: see Baygon
Supona: see chlorfenvinphos
Supracide: see methidathion
Su Seguro Carpidor: see trifluralin
2,4,5-T

Chemical Name: 2,4,5-Trichlorophenoxyacetic acid (CAS 93-76-5)

Primary Use: Herbicide

Sample Purity: Assumed technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3</td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1,467-2,725)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>4</td>
<td>F</td>
<td>3</td>
<td>500-1,000</td>
</tr>
<tr>
<td>Pheasant</td>
<td>6</td>
<td>F</td>
<td>7</td>
<td>>1,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation (in mallards), ataxia, imbalance, falling, sitting, using wings for pedestrian locomotion, phonation, wings spread, spasms, tetanic seizures, hyporeactivity, asthenia, myasthenia, bradypnea, and immobility. Signs appeared as soon as 20 min and mortalities usually occurred between 1 and 3 days after treatment. Remission took up to 36 days.

TCA: see TBA

TCDD

Alternative Names: None found

Chemical Name: 2,3,7,8-Tetrachlorodibenz[a,b]j,e]I,4]dioxin (CAS 1746-01-6)

Primary Use: Undesirable contaminant of 2,4,5-T and trichlorophenol (any compound in which technical trichlorophenol is a starting material could be contaminated with TCDD)

Sample Purity: Analytical grade dissolved in corn oil

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard (st)</td>
<td>20</td>
<td>M,F</td>
<td>1 wk</td>
<td>>0.108</td>
</tr>
<tr>
<td>Bobwhite (HGP; st)</td>
<td>16</td>
<td>M</td>
<td>7</td>
<td>0.0150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0099-0.0245)</td>
</tr>
<tr>
<td>Ringed turtle (st)</td>
<td>30</td>
<td>M</td>
<td>A</td>
<td>>0.810</td>
</tr>
</tbody>
</table>

*Except as noted.

Signs of Intoxication: Regurgitation, polydipsia, anorexia, hypoactivity, slowness, emaciation, asthenia, ataxia, imbalance, sitting, fluffed feathers, hyperexcitability, jitteriness, huddled position, unkempt, falling, hyporeactivity, tremors, spasms, convulsions, and immobility. Regurgitation appeared as soon as a few minutes after treatment, but other signs of intoxication did not appear until 7 days after treatment. Mortalities occurred...
between 13 and 37 days after treatment. Remission in survivors had apparently occurred by 30 days after treatment.

Notes: Gross necropsies of the sacrificed ringed turtle-dove survivors revealed enlarged livers; livers from the dosage level of 0.108 mg/kg were twice the size of those from control birds. Necropsies of the dead bobwhite revealed severe emaciation, visceral uration, and accumulation of fluids in the pericardium and abdominal cavity.

TCDS: see tetradifon
TD-480: see hexaflurite

TDE

Alternative Names: DDD, dichloro diphenyl dichloroethane, ENT 4225, ME-1700, Rhothane D-3, tetrachlorodiphenylethane

Chemical Name: 1,1'-[2,2-Dichlorovinylidene]bis[4-chlorobenzene] (CAS 72-54-8)

Primary Use: Insecticide, mosquito larvicide and adulticide

Sample Purity: ≥95%

Sample Purity: ≥95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
<th>95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>F</td>
<td>3</td>
<td>>2,000</td>
<td></td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>F</td>
<td>6</td>
<td>79.4</td>
<td>(38.5-163)</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>12</td>
<td>M</td>
<td>2</td>
<td>84.1</td>
<td>(15.0-23.8)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>10</td>
<td>F</td>
<td>3</td>
<td>35.4</td>
<td>(60.6-116)</td>
</tr>
<tr>
<td>Chukar</td>
<td>9</td>
<td>M,F</td>
<td>2-3</td>
<td>240</td>
<td>(25.5-49.9)</td>
</tr>
<tr>
<td>Rock dove</td>
<td>16</td>
<td>M,F</td>
<td>9</td>
<td>50.1</td>
<td>(16.7-150)</td>
</tr>
<tr>
<td>House sparrow</td>
<td>16</td>
<td>F</td>
<td>A-b</td>
<td>35.4</td>
<td>(8.85-141)</td>
</tr>
</tbody>
</table>

aExcept as noted.
bSome of these birds may have been in breeding condition.

Signs of Intoxication: Ataxia, imbalance, hyperexcitability, tenseness, jerkiness, shakiness, slowness, hyperventilation, huddled position, ptosis, tremors, and ataraxia. Signs appeared as soon as 2 h and mortalities usually occurred between 1 and 5 days after treatment. Remission took up to 11 days.

Tetron: see tetradifon
Tetron V-18: see tetradifon
Tekwaix: see methyl parathion
TEL: see tetraethyllead
Telodrin: see isobenzan

TEMEPHOS

Alternative Names: abaphos, Abate, Abathion, AC-52160, Biothion, Difenthos, ENT 27165, Experimental Insecticide 52160, Nimitox, tetraenphos

Chemical Name: Phosphorothioic acid O,O'-(thiodi-4,1-

phenylene) O,O',O'-tetramethyl ester (CAS 3383-96-8)

Primary Use: Insecticide

Sample Purity: 92%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog</td>
<td>3</td>
<td>F</td>
<td>-</td>
<td>>2,000</td>
</tr>
<tr>
<td>Mallard</td>
<td>16</td>
<td>M</td>
<td>4-7</td>
<td>79.4</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>F</td>
<td>6</td>
<td>18.9</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>12</td>
<td>M</td>
<td>2</td>
<td>84.1</td>
</tr>
<tr>
<td>Pheasant</td>
<td>10</td>
<td>F</td>
<td>3-4</td>
<td>35.4</td>
</tr>
<tr>
<td>Chukar</td>
<td>9</td>
<td>M,F</td>
<td>2-3</td>
<td>240</td>
</tr>
<tr>
<td>Rock dove</td>
<td>16</td>
<td>M,F</td>
<td>-</td>
<td>50.1</td>
</tr>
<tr>
<td>House sparrow</td>
<td>16</td>
<td>F</td>
<td>A</td>
<td>35.4</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Asthenia, ataxia, low carriage, fluffed feathers, fasciculation, tremors, salivation, lacrimation, tracheal congestion, miosis, muscular weakness, tachycardia, tachypnea, tetany, immobility. Penile extrusion occurred in one mallard. Signs appeared as soon as 5 min and mortalities usually occurred between 1 and 24 h after treatment; however, one mallard died 15 days after treatment. Remission in survivors took up to 2 weeks. Treatment levels as low as 10 mg/kg produced signs and 12.5 mg/kg produced deaths.

Other Toxicity Data: The 30-day EMLD for mallards (n = 22) is 2.5 mg/kg per day for both sexes. The resulting cumulative toxicity index is 79.4/2.5 = 32, indicating a high degree of cumulative action for an organophosphate.

Notes: Dose-response slopes in acute oral tests were low (increasing dosage levels did not produce proportional increases in the response), which may indicate poor absorption of single doses.

For a discussion of the comparative toxicity of temephos, see Tucker and Haegele (1971).

Temik: see aldicarb
Tendex: see Baygon
Ten-eighth: see sodium monofluoroacetate
Tenoran: see chloroxuron
TEP: see TEPP

TEPA

Alternative Names: aphoxide, APO, ENT 24915

Chemical Name: 1,1',1"-Phosphinylidynetrisaziridine (CAS 545-55-1)

Primary Use: Chemosterilant, insecticide

Sample Purity: 72.5%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog</td>
<td>8</td>
<td>M</td>
<td>—</td>
<td>500 (250-1,000)</td>
</tr>
<tr>
<td>Canada goose</td>
<td>12</td>
<td>M,F</td>
<td>—</td>
<td>13.0 (9.08-18.6)</td>
</tr>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>8.54 (6.16-11.8)</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>16</td>
<td>F</td>
<td>2a</td>
<td>>20.0 (22.0-40.5)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>6</td>
<td>F</td>
<td>3-4</td>
<td>29.9 (22.0-40.5)</td>
</tr>
<tr>
<td>Chukar</td>
<td>12</td>
<td>M,F</td>
<td>2-4</td>
<td>63.9 (48.8-83.8)</td>
</tr>
<tr>
<td>Rock dove</td>
<td>12</td>
<td>M,F</td>
<td>— b</td>
<td>30.0 (10.0-18.2)</td>
</tr>
<tr>
<td>Red-winged blackbird</td>
<td>8</td>
<td>M</td>
<td>— b</td>
<td>13.5</td>
</tr>
<tr>
<td>House finch</td>
<td>16</td>
<td>M</td>
<td>—</td>
<td>100 (10.0-18.2)</td>
</tr>
</tbody>
</table>

Chemical Name: Diphosphoric acid, tetraethyl ester (CAS 107-49-3)

Primary Use: Insecticide

Sample Purity: 40% TEPP, 60% other ethyl phosphates

Signs of Intoxication: Birds—goose-stepping ataxia, miosis, salivation, lacrimation, tenesmus, diarrhea, wings crossed over back, tetanic seizures, wing-beat convulsions or opisthotonos. Mortalities usually occurred in the first 25 min after treatment. Bullfrogs—levels as low as 17.7, 25.0, and 35.4 mg/kg produced one mortality of the three frogs tested at each level.

Other Toxicity Data: The calculated percutaneous LD50 for 1-year-old mallard drakes (n = 8) after a 24-h foot exposure is 64.0 (CL 28.7-142) mg/kg. In addition to many of the above, signs observed after percutaneous exposure to TEPP included ataxia, imbalance, slowness, fluid exuding from nares, spasms, wings spread, and immobility. Mortalities occurred between 2.5 and 25.5 h after initiation of treatment. When the percutaneous LD50 is compared with the acute oral LD50, TEPP appears to have a low degree of dermal hazard in mallards.

Note: For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

TERBUTRYN

Alternative Names: GS-14260, Igran, Igran 50, prebane, Short-stop E

Chemical Name: N-(1,1-dimethyl-ethyl)-N'-ethyl-6-(methylthio)-1,3,5-triazine-2,4-diamine (CAS 886-50-0)

Primary Use: Herbicide

Sample Purity: 97.8%
Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>4</td>
<td>F</td>
<td>3-4</td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant</td>
<td>3</td>
<td>F</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Polydipsia, regurgitation, ataxia, imbalance, sitting, and tremors. Signs were observed only in mallards and appeared as soon as 19 min after treatment. Remission took up to 10 days. No mortalities occurred.

TERGITOL 12-P-6

Alternative Names: None found

Chemical Name: Unknown

Primary Use: Emulsifier, ingredient in 4g2 Mosquito Larvicide Oil

Sample Purity: Technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>F</td>
<td>18</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia and imbalance. Signs appeared as soon as 2 h after treatment. Remission had occurred by 1 day after treatment.

Terpenes: see Thanite
Terpyl thioctanoacetate: see Thanite
Terrachlor: see PCNB
Terrachlor-Super X:see Terrazole
Terraclor: see PCNB
Terra-Coat L-205: see PCNB, Terrazole
Terra-Coat LT-2: see PCNB
Terracur P: see fensulfothion

TERRAZOLE

Alternative Names: OM 2424, Terrachlor-Super X, Terra-Coat L-205, Truban

Chemical Name: 5-Ethoxy-3-(trichloromethyl)-1,2,4-thiadiazole (CAS 2593-15-9)

Primary Use: Fungicide

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M,F</td>
<td>3-5</td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant</td>
<td>6</td>
<td>M,F</td>
<td>2-4</td>
<td>>2,000</td>
</tr>
<tr>
<td>Chukar</td>
<td>2</td>
<td>M</td>
<td>2-3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: No signs occurred in the mallards and chukars. The pheasants showed convulsions, tremors, and prostration during the second and third days after treatment.

TETRACHLORVINPHOS

Alternative Names: Apexx, Gardona, Rabon, SD 8447, stiriros

Chemical Name: Phosphoric acid, 2-chloro-1-(2,4,5-trichlorophenyl)ethenyl dimethyl ester (CAS 961-11-5)

Primary Use: Insecticide

Sample Purity: Technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M,F</td>
<td>3-5</td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant</td>
<td>6</td>
<td>M,F</td>
<td>2-4</td>
<td>>2,000</td>
</tr>
<tr>
<td>Chukar</td>
<td>2</td>
<td>M</td>
<td>2-3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: No signs occurred in the mallards and chukars. The pheasants showed convulsions, tremors, and prostration during the second and third days after treatment.

TETRADIFON

Alternative Names: ENT 23737, Duphar, NIA 5488, TCDS, tedion, Tedion V-18, V-18

Chemical Name: 1,2,4-Trichloro-5-[(4-chlorophenyl)sulfonyl]benzene (CAS 116-29-0)

Primary Use: Insecticide, acaricide

Sample Purity: 99.4%
Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>3</td>
<td>M</td>
<td>4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Ataxia, wing twitching, imbalance, and slowness. Signs appeared as soon as 1 h after treatment. Remission had occurred by the day following treatment.

TETRAETHYLLEAD

Alternative Names: lead, tetraethyl; lead tetraethide; TEL

Chemical Name: Tetraethyl-plumbane (CAS 78-00-2)

Primary Use: Gasoline additive

Sample Purity: Commercially pure

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>107 (44.5-253)</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>24.6 (14.7-41.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>24</td>
<td>M</td>
<td>12</td>
<td>458 (224-649)</td>
</tr>
<tr>
<td>Mallard (st)</td>
<td>24</td>
<td>M</td>
<td>12b</td>
<td>308 (237-400)</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>F</td>
<td>12b</td>
<td>546 (313-950)</td>
</tr>
<tr>
<td>Ring-billed gull</td>
<td>9</td>
<td>M,F</td>
<td>1</td>
<td>250 (170-368)</td>
</tr>
</tbody>
</table>

*These cocks may have been in breeding condition.

Signs of Intoxication: Polydipsia, regurgitation, reluctance to leave the swimming pond (in mallards), shakiness, hypoactivity, wing-drop, wings spread, ataxia, imbalance, geotaxia, slowness, running and falling, sitting, reluctance to move, fluffed feathers, ptosis, ataxia, asthenia, mydriasis, tremors, and anorexia. Regurgitation in mallards occurred as soon as 7 min, other signs appeared as soon as 20 min, and mortalities usually occurred between 1 and 4 days after treatment. Remission took up to 8 days.

Note: For data and discussion on the effects of tetraethyllead on eggshell thickness in mallards and Japanese quail, see Haegele and Tucker (1974).

Tetraethylpyrophosphate: see TEPP
Tetrafenphos: see temephos
Tetrasodium ethylene diamine tetraacetate: see Airkem A-33 Dry
Tetron-100: see TEPP

TFM

Alternative Names: Lampricide, Lampricid 2770, TFM-A

(TFM recrystallized by Aldrich Chemical Co.), TFM-FG (field grade TFM)

Chemical Name: 4-Nitro-3-(trifluoromethyl)phenol (CAS 88-30-2)

Primary Use: Lampricide

Sample Purity: >96% (TFM-A), 35% in dimethyl formamide (TFM-FG)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>24</td>
<td>M</td>
<td>12</td>
<td>458 (224-649)</td>
</tr>
<tr>
<td>Mallard (st)</td>
<td>24</td>
<td>M</td>
<td>12b</td>
<td>308 (237-400)</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>F</td>
<td>12b</td>
<td>546 (313-950)</td>
</tr>
<tr>
<td>Ring-billed gull</td>
<td>9</td>
<td>M,F</td>
<td>1</td>
<td>250 (170-368)</td>
</tr>
</tbody>
</table>

*These birds may have been in breeding condition.

Signs of Intoxication: Polydipsia, regurgitation, stumbling, tachypnea, sitting, ataxia, ataxia, imbalance, myasthenia, running and falling, withdrawal, dyspnea, wing-drop, wings spread, tonic convulsions, tetanic seizures, and terminal wing-beat convulsions and opisthotonos. The timing of the appearance of signs and mortalities was different for the two formulations. With TFM-A signs appeared as soon as 13 min and mortalities usually occurred between 20 and 50 min after treatment. Remission took up to 7 or 8 days. With TFM-FG signs appeared as soon as 1 min and mortalities usually occurred between 4 and 20 min after treatment. Remission took up to 4 h.

Other Toxicity Data: Mallards 8 weeks old (5 M and 5 F per treatment group) were exposed to TFM-A in their drinking and swimming water at concentrations of 5.0, 15.8, 50.0, and 500 mg/L for 48 h. No mortalities occurred but clinical signs were apparently induced at the 50.0-mg/L level and the 500 mg/L level caused rejection of the treated water.

Mallards 1 year old (n = 5 M and 5 F per treatment group) were exposed to TFM-FG in their drinking and swimming water at concentrations of 57.1 and 285.7 mg/L (20.0 and 100 mg/L active TFM) for 48 h. No mortalities occurred and clinical signs of intoxication were slight.
A combination of TFM-FG and clonitralid was administered to mallard drakes \((n = 24) \), bobwhite cocks \((n = 24) \), and male and female ring-billed gulls \((n = 24) \). Results were similar to those after administration of TFM-FG alone. Mallards 4 months old \((n = 15\ M\ and\ 15\ F) \) were exposed to the mixture in their drinking and swimming water with results similar to the studies of TFM-FG alone. In these combination studies, the ratio of TFM to clonitralid was 98:2; the mixture thus contained 34.3% active TFM and 0.7% active clonitralid.

Notes: On the basis of active ingredients, it appears that TFM-FG is more toxic to mallards than TFM-A. This finding can be explained as a synergistic effect contributed by the dimethylformamide carrier, which probably speeds up the absorption of TFM in the gastrointestinal tract either by affecting the membranes lining the tract or by acting as a solvent for the TFM.

For further discussion of these data, see Hudson (1979).

TFM-A: see TFM
TFM-FG: see TFM
TH-6040: see difluron

THALLIUM SULFATE

Alternative Names: Zelio

Chemical Name: Thallous sulfate \((\text{CAS 7446-18-6}) \)

Primary Uses: Rodenticide, insecticide bait ingredient, mammal control agent

Sample Purity: 99% \((80.2\% \text{ Thallium}) \)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>36.7 (28.3–47.5)</td>
</tr>
<tr>
<td>Golden eagle</td>
<td>4</td>
<td>–</td>
<td>1</td>
<td>60.0–120</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3–4</td>
<td>23.7 (17.1–32.9)</td>
</tr>
</tbody>
</table>

*Except as noted.

Signs of Intoxication: Polydipsia, regurgitation, ataxia, imbalance, high carriage, slowness, goose-stepping ataxia, myasthenia, asthenia, hypoactivity, hopping and falling, wing-drop, immobility, and loss of righting reflex. Signs appeared as soon as 15 min and mortalities usually occurred between 1 and 7 days after treatment. Remission took up to 20 days.

Notes: For a more complete presentation of the toxicological data for the eagle studies, and results of residue analyses performed on the eagle mortalities, see Bean and Hudson (1976).

Gross necropsies of mallard and pheasant mortalities revealed consistent incidence of extreme visceral urination (especially of the Glisson's capsule and the pericardium), pericardium adhering to the heart, hyperemia and purpura of the gastrointestinal tract, sloughing of the lining of the gastrointestinal tract, coronary band petechiation, and small spleens.

THANITE

Alternative Names: ENT 92, terpinyl thiocyanocacetate

Chemical Name: 82% Exo-acetic acid, thiocyanato-1,7,7-trimethylbicyclo[2.2.1] hept-2-y1 ester and 18% related terpenes \((\text{CAS 115-31-1}) \)

Primary Use: Insecticide, experimental piscicide

Sample Purity: 100%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>9</td>
<td>M</td>
<td>12</td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant</td>
<td>6</td>
<td>M</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

*These drakes may have been in breeding condition.

Signs of Intoxication: Polydipsia, regurgitation, ataxia, goose-stepping ataxia, jerking, reluctance to rise and move, falling, unkemptness, using wings to aid pedestrian locomotion, emaciation, and asthenia. Signs appeared 1 day after treatment in mallards and 7 days after treatment in pheasants. No mortalities occurred. Remission took up to 20 days.

Thifor: see endosulfan
Thimer: see thirarn
Thime: see phorate
Thimul: see endsulfan
Thiocarboximine: see SD 17250
Thiodan: see endsulfan
Thiodemeton: see disulfoton

THIONAZIN

Alternative Names: AC-18133, American Cyanamid 18133, Cynem, EN-18133, ENT 25580, Experimental Nematicide 18133, Nemafos, Nemaphos, Zenophos

Chemical Name: Phosphorothiolic acid, \(O,O\)-diethyl \(O\)-pyrazinyl ester \((\text{CAS 297-97-2}) \)
Primary Use: Nematocide, soil insecticide, fungicide
Sample Purity: 95.6%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>1.68 (1.21-2.33)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>2.11 (1.68-2.66)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Regurgitation and polydipsia (in mallards), ataxia, imbalance, running and falling, sitting, miosis, masseter tenseness, lacrimation, using wings for pedestrian locomotion, dyspnea, wings spread, tremors, asthenia, tonic convulsions, tetanic seizures, wing-beat convulsions and opisthotonus. Signs appeared as soon as 5 min and mortalities usually occurred between 10 and 80 min after treatment. Remission had usually occurred by 2 days after treatment.

Other Toxicity Data: The calculated percutaneous LD50 for 10-month-old mallard drakes (n = 8) after a 24-h dermal foot exposure is 7.07 [CL5.00-10.0] mg/kg. Penile extrusion was noted in mortalities; otherwise, signs after dermal treatment were similar to those reported above. Mortalities usually occurred between 1 and 19 h after the initiation of treatment; however, one drake died 4 days after the initiation of treatment. Remission took up to 5 days. When the percutaneous LD50 is compared with the acute oral LD50, thionazin appears to have a moderate degree of dermal hazard in mallards.

Note: For further discussion of the percutaneous toxicity data, see Hudson et al. (1979).

Thionex: see endosulfan
Thiopthal: see folpet
Thiophos: see parathion
Thiosan: see thiram
Thiotex: see thiram

THIRAM

Chemical Name: Thioperoxycarbonic diamide ((H₂N)C(S)₂S₄), tetramethyl (CAS 137-26-8)

Primary Use: Fungicide
Sample Purity: ≥99%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>7</td>
<td>F</td>
<td>3</td>
<td>>2,800</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3-4</td>
<td>673 (485-932)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Mallards showed transient ataxia only. Pheasants showed tachypnea, wing-drop, reluctance to move, fluffed feathers, ptosis, diarrhea, tremors like those produced by chlorinated organic compounds, immobility.

Thiramad: see thiram
Thirasan: see thiram
Thuricide: see Bacillus thuringiensis (Berliner)
Thylate: see thiram
Tiezene: see zineb
Tiguvon: see fenithion
Ticarex: see PCNB
Timet: see phorate
Tirampa: see thiram
TMTD: see thiram
TMTDS: see thiram
Tordon: see picloram
Tormona: see 2,4,5-T
Torque: see Vendex
Toxakil: see toxaphene

TOXAPHENE

Alternative Names: Alitex, camphechlor, chlorinated camphene, Clor Chem T-590, Compound 3956, ENT 9735, Hercules 3956, Mitox, octachlorocamphene, Phenacide, Phenatox, polychlorocamphene, Strobane-T, Synthetic 3956, Toxakil

Chemical Name: Chlorinated camphenes (CAS 8001-35-2)

Primary Use: Insecticide
Sample Purity: 90%¹ and 100%² (100% = 67-69% total chlorine content)

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Age (months)</th>
<th>LD50 95% CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulvous whistling-duck¹</td>
<td>8</td>
<td>3-6</td>
<td>99.0 (37.2-264)</td>
</tr>
</tbody>
</table>
Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% CL (mg/kg)</td>
</tr>
<tr>
<td>Mallard</td>
<td>20</td>
<td>F</td>
<td>3–5</td>
<td>70.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(37.6–133)</td>
</tr>
<tr>
<td>Sharp-tailed</td>
<td>8</td>
<td>M</td>
<td>12–48</td>
<td>19.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(14.1–28.2)</td>
</tr>
<tr>
<td>Bobwhite</td>
<td>15</td>
<td>M</td>
<td>9–11</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(11.9–47.4)</td>
</tr>
<tr>
<td>California quail</td>
<td>15</td>
<td>M</td>
<td></td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(20.0–80.0)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>8</td>
<td>F</td>
<td>2–3</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(20.0–28.3)</td>
</tr>
<tr>
<td>Gray partridge</td>
<td>12</td>
<td>M</td>
<td>A</td>
<td>100–316</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(425–794)</td>
</tr>
<tr>
<td>Sandhill crane</td>
<td>3</td>
<td>F</td>
<td>–</td>
<td>581</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(28.3–36.1)</td>
</tr>
<tr>
<td>Horned lark</td>
<td>6</td>
<td>M,F</td>
<td>A</td>
<td>139–240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(78.1–195)</td>
</tr>
<tr>
<td>Mule deer</td>
<td>3</td>
<td>M</td>
<td>18</td>
<td>36.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(26.6–51.1)</td>
</tr>
<tr>
<td>Domestic goat</td>
<td>1</td>
<td>M</td>
<td>>60</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(13.3–37.6)</td>
</tr>
<tr>
<td>California quail</td>
<td>12</td>
<td>F</td>
<td>9–11</td>
<td>59.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(47.1–74.7)</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>4</td>
<td>95.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(76.1–121)</td>
</tr>
<tr>
<td>Rock dove</td>
<td>9</td>
<td>M,F</td>
<td>A</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(78.1–195)</td>
</tr>
<tr>
<td>Ringed turtle-dove</td>
<td>8</td>
<td>F</td>
<td>A</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(26.9–38.0)</td>
</tr>
</tbody>
</table>

*Except as noted.

†Many of these birds were in the early stages of gonadal development for the breeding season.

Signs of Intoxication: Ataxia, goose-stepping ataxia, circling, low or high carriage, neck pulled in, ptosis, constant tremors that appeared like shivering, phonation, reluctance to move, tenesmus, hyperthermia, wing-beat convulsions or opisthotonos. This is a fairly slow-acting chemical. Although signs were seen as soon as 20 min in some species, mortalities usually occurred between 2 and 14 days after treatment.

Other Toxicity Data: Toxaphene did not cause eggshell thinning in tests on Japanese quail (Haegele and Tucker 1974).

Note: For data and discussion on the effects of age on the sensitivity of mallards to toxaphene, see Hudson et al. (1972).

TRICHLOROFON

Alternative Names: Anthon, BAY 13/59, BAY L-13/59, Bovinox, Cekufon, chlorofos, chlorphon, Chlorophos, Danex, diptex, Diptex, Diptetes, Dylox, ENT 19763, Equino-Aid, metrifonate, Neguvon, Proxol, trichloro- fon, trichlorphon, trichlorphon, Trinex, Tugon

Chemical Name: Phosphonic acid, (2,2,2-Trichloro-1-hydroxyethyl)-dimethyl ester (CAS 52-68-6)

Primary Use: Insecticide

Sample Purity: 98%
Primary Use: Insecticide

Sample Purity: 98%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 95%CL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>12.0 (8.65-16.6)</td>
</tr>
</tbody>
</table>

Signs of Intoxication: High carriage, neck tremors, goose-stepping ataxia, salivation, nautation, dyspnea, prostration with wings spread, tetany. Signs appeared as soon as 20 min and recovery among survivors took as long as 28 days. Mortalities usually occurred between 2 and 4 h after treatment. Levels as low as 5.66 mg/kg produced some mortality. Weight losses occurred among survivors.

Trichloronate: see trichloronat
Trichlorpholon: see trichlorphon
Trichlorphon: see trichlorfon
Trichlorpyrophosphorus: see chlorpyrifos
Tri-Endothal: see endothall
Trieste Flowers: see pyrethrum

TRIFLURALIN

Alternative Names: Elancolan, ENT 28203, L-36352, Lilly 36352, Su Seguro Carpidor, Trefanocide, Treficon, Treflan, Trifluren, Trifam

Chemical Name: 2,6-Dinitro-N,N-dipropyl-4-(trifluoro-methyl) benzenamine (CAS 1582-09-8)

Primary Use: Herbicide

Sample Purity: 96.7%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>6</td>
<td>F</td>
<td>3-4</td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant</td>
<td>3</td>
<td>F</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Very mild ataxia only.

Triflurex: see trifluralin
Trifocide: see DNOC
Triherbicide-CIPC: see CIPC
Triherbicide-IPC: see IPC-400
Trijm: see trifluralin
Trimeton: see dimethoate
Trinex: see trichlorfon

Trinoxol: see 2,4,5-T
Trioxone: see 2,4,5-T
Tri-PCNB: see PCNB
Tripromol: see thiram
Trihison: see carbophenothion
Trizan: see PCNB
Tritoflor: see zineb
Trolene: see rotenone
Truban: see Terrazole
Trysben 200: see TBA
Tuads: see thiram
Tuba: see rotenone
Tubatoxin: see rotenone
Tuberite: see IPC-400
Tugon: see trichlorfon
U-2069: see dicrolan
UC 7744: see carbaryl
UC 21149: see aldicarb
Ultragle: see methidathion
Ultragle Geigy: see methidathion
Unden: see Baygon
V-18: see tetradifon
Valexon: see phoxim
Vancide 95RE: see captan
Vancide PA: see CHE 1843
Vancide TM-95: see thiram
Vancide TM-Flowable: see thiram
Vapona: see DDVP
Vapotone: see TEPP
V-C9-104: see ethoprop
VCS 506: see leptothen
Vegabon: see chloramphen
Vegiben: see chloramphen
Velsicol 104: see heptachlor
Velsicol 1068: see chlordane

VENDEX

Alternative Names: ENT 27738, neostanox (proposed), SD 14114, Torque

Chemical Name: Hexakis(2-methyl-2-phenylpropyldistannoxane (CAS 13356-08-6)

Primary Use: Miticide

Sample Purity: >95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>7</td>
<td>F</td>
<td>3</td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant</td>
<td>3</td>
<td>M</td>
<td>3</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: Mallards—ataxia, stumbling, phona-
tion, imbalance, geotaxia, slowness, asthenia, and myasthenia. Signs appeared as soon as 25 min after treatment, and remission took up to 21 days. No mortalities occurred. No signs were observed in pheasants.

Verbigen: see chloramfen
Vergemaster: see 2,4-D
Vertron 2D: see 2,4-D
Viozene: see Ronnel
Viral pesticide: see nucleopolyhedral virus
Visko-Rhap Low Volatile 4L: see 2,4-D
Volaton: see phoxim
Vondcaptan: see captan
Vonduron: see diuron
Warbex: see famphur
Weed-Ag-Bar: see 2,4-D
Weedar: see 2,4,5-T
Weedar 64: see 2,4-D
Weedazol: see amitrol
Weed-B-Gon: see 2,4-D
Weedez Wonder Bar: see 2,4-D
Weedol: see paraquat dichloride
Weedone: see 2,4,5-D; PCP; 2,4,5-T
WHO OMS-711: see aldicarb
WL 19805: see cyanazine
Wofatox: see methyl parathion
Y-2: see IPC-400
Y-3: see CIPC
Yomesan: see clonitralid

YUMA CHEMICAL "SPREADER A"

Alternative Names: film extender, spreader

Chemical Name: Unknown

Primary Use: As substance which increases the area that a given volume of liquid will cover on a solid or on another liquid, used in pesticide applications

Sample Purity: Assumed technical grade

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chukar (st)</td>
<td>2</td>
<td>—</td>
<td>3-4</td>
<td>1,000-10,000</td>
</tr>
</tbody>
</table>

Signs of Intoxication: None observed. The only mortality occurred between 23 and 43 h after treatment.

Z-78: see zineb
Zebox: see zineb
Zectran: see mexacarbate
Zectran (acylated): see mexacarbate (acylated)
Zello: see thallium sulfate

Zincophos: see thionazin
Zephiran chloride: see Airkeem A-33 Dry
Zerdane: see DDT
Zidan: see zineb

ZINC PHOSPHIDE

Alternative Names: Kilrat, Mous-con, Rumetan

Chemical Name: Zinc phosphide (CAS 1314-84-7)

Primary Use: Rodenticide

Sample Purity: 94%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>12</td>
<td>F</td>
<td>3-4</td>
<td>35.7</td>
</tr>
<tr>
<td>Golden eagle</td>
<td>2</td>
<td>—</td>
<td>12</td>
<td>>20.0</td>
</tr>
<tr>
<td>Pheasant</td>
<td>12</td>
<td>M</td>
<td>3</td>
<td>16.4</td>
</tr>
<tr>
<td>Horned lark (st)</td>
<td>9</td>
<td>M,F</td>
<td>A<sup>b</sup></td>
<td>47.2</td>
</tr>
</tbody>
</table>

*Except as noted.

These birds may have been in breeding condition.

Signs of Intoxication: Polydipsia and regurgitation (in mallards), ataxia, imbalance, anorexia, tenseness, hypoactivity, hyporeactivity, tachypnea, dyspnea, ptosis, and immobility. Signs appeared as soon as 15 min and mortalities usually occurred between 2 and 21 h after treatment. Remission took up to 1 month.

ZINEB

Chemical Name: [[1,2-Ethanediylbis(carbamodithioate)] (2-)]zinc (CAS 12122-67-7)

Primary Use: Fungicide

Sample Purity: 95%

Acute Oral Toxicity Summary

<table>
<thead>
<tr>
<th>Test animal</th>
<th>No.</th>
<th>Sex</th>
<th>Age (months)</th>
<th>LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallard</td>
<td>6</td>
<td>M</td>
<td>11-12<sup>a</sup></td>
<td>>2,000</td>
</tr>
<tr>
<td>Pheasant</td>
<td>3</td>
<td>F</td>
<td>3-4</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

*These drakes may have been in breeding condition.
Signs of Intoxication: Goose-stepping ataxia, wings crossed over back, general myasthenia from 1 h up to 1 or 2 days.

Zinophos: see thionazin
Zinosan: see zineb
Zobar: see TBA
ZR-515: see methoprene
17/147: see azinphos-methyl

492 MOSQUITO LARVICIDE OIL

Alternative Names: None found

Chemical Name: Mixture of Armeen OD, Tergitol 12-P-6, and Process Oil 492

References

Hudson, R. H. 1979. Toxicities of the lampricides 3-trifluoro-methyl-4-nitrophenol (TFM) and the 2-aminoethanol salt of 2', 5-dichloro-4'-nitralsalicylanilide (Bayer 73) to four bird species. U.S. Fish Wildl. Serv., Invest. Fish Control 89. 5 pp.

Glossary

Aggressiveness—Loss of fear of the investigator, abnormal belligerence toward the investigator or other individuals in the test group

Anorexia—Loss of appetite, not eating feed

Apnea—Cessation of breathing

Asthemia—Weakness, debility

Asynery—Lack of coordination between muscle groups; movements are in serial order instead of being made together

Ataraxia—Imperturbability, calmness

Ataxia—Muscular incoordination, especially when voluntary muscular movements are attempted

Bradycardia—Slow heart beat

Bradytpnea—Slow breathing

Catatonia—Stupor, tendency for an animal to assume and remain in a fixed posture, characterized by extreme unresponsiveness and inactivity

Clonic convulsions—Alternate relaxation and involuntary contractions of muscles

Coma—Abnormal deep stupor; the animal cannot be roused by stimulation

Convulsions—Massive involuntary muscle contractions

Deliary—Weakness of tonicity in functions or organs of the body

Diarrrhea—Discharge of more or less fluid feces

Dyspnea—Shortness of breath, labored breathing

Edema—Swelling

Emaciation—Wasting of the flesh, state of being extremely lean

Emprophstotonos—Lying with the body incurved, arching of the neck toward the belly

Esinusphilia—Excessive eosinophiles in differential white blood cell counts

Epistaxis—Nose bleed

Erythema—Redness of the skin due to dilation of blood vessels

Eschar—A slough, especially following a burn

Excessive phonation—Making abnormally loud or frequent vocal sounds

Exophthalmia—Protruding eyeballs

Exudate—Secretion of fluid

Fasciculation—Skin or superficial tremors

Flaccid—Defective or flabby muscle tone

Geotaxia—Heavy-footed walking due to muscular incoordination in the legs and feet

Goose-stepping ataxia—A type of incoordination where the feet are raised unnecessarily high in each step

Hemorrhage—Abnormal discharge of blood from vessels into tissues or from the body

Hyperacusia—Increased reaction to sound

Hyperemia—Congestion, an unusual amount of blood in a part of the body

Hypereflexia—Increased reaction to stimuli

Hyperthermia—Elevated body temperature

Hypoesthesia—Dulled sensitivity to touch

Hyporeactivity—Lethargy, diminished reaction to stimuli
Ischemia—Local pallor of the skin (often due to constriction of the blood vessels)
Lacrimation—Production of tears
Lethargy—Stupor, torpor, sluggishness
Loss of righting reflex—No attempt to regain normal body position
Masse ter tension—Tightness of the jaw muscle
Miosis—Constriction of the pupil
Muscularic syndrome—Stimulation of smooth muscle, often resulting in secretions
Myasthenia—Muscular weakness
Mydriasis—Dilation of the pupil
Neutrophilia—Excessive neutrophiles in differential white blood cell counts
Nictitating membrane flicker—Abnormally frequent activation of the nictitating membrane of the eye
Nystagmus—Involuntary eyeball movement
Opacity—Loss of lens or corneal transparency
Opisthotonos—Arching of the back and arching of the neck over the back
Paralysis—Temporary suspension or permanent loss of function
Paraplegia—Paralysis of the lower body and both legs
Paresis—Partial or incomplete paralysis
Penile extrusion—Forcing or pushing out of the penis
Petechia—Small pin-point hemorrhage spots
Phonation—Utterance of vocal sounds
Pica—A perversion of appetite with a craving for substances not fit for feed
Pilorection—Hairst more erect than usual
Polydipsia—Excessive drinking
Polyuria—Excessive urination
Prostration—Absolute exhaustion
Ptosis—Drooping of the eyelid
Purpura—Hemorrhages into the skin, mucus membranes, internal organs, and other tissues; does not disappear under pressure
Righting reflex—Ability to assume upright normal body position

Remission—Lessening of severity, or abatement of signs of intoxication
Running or hopping and falling—Animal runs or hops for a short distance and then falls, sometimes going into a tonic spasm or tetanic seizure
Salivation—Excessive secretion of saliva
Spasm—An involuntary, sudden movement or convulsive muscular contraction
Sternal recumbency—Resting or reclining on the chest or breast
Tachycardia—Rapid heart beat
Tachypnea—Rapid breathing
Tenesmus—Spasmodic contractions of anal sphincter
Tetanic seizures—Temporary whole-body rigidity
Tetany—Intermittent tonic convulsions
Tonic convulsions—Continuous, unremitting muscular contractions
Torpor—State of being dormant or inactive; temporary loss of all or part of the power of sensation or motion
Tracheal congestion—Congestion resulting from constriction of tracheal cartilages, mucous accumulation in the trachea, or both
Tremors—Twitching of muscles
Unkemptness—Disorderly fur or feathers, from lack of grooming or preening
Urination—Excessive deposition of uric acid salts in connective tissue
Using wings for or to aid pedestrian locomotion—A condition in birds where ataxia is so severe that walking or flying is not possible, but the wings can still be used for movement on the floor or ground
Wing-beat convulsions—Convulsions associated with non-functional wing flapping
Wing-drop—Wings carried in abnormally low position
Wings crossed over back—Condition resulting from very high wing position
Wing shivers—Constant rapid wing twitching
Withdrawal—Diminished interaction with other animals in cage or with observer

Index to Species Tested

Agelaius phoeniceus: see Red-winged blackbird
Albino rat—Rattus norvegicus: chlorpyrifos, D.M. 7537, D.M. 7597, nucleopolyhedral virus, phosphamidon, polychlorinated biphenyls
Alectoris chukar: see Chukar
Anas acuta: see Northern pintail
Anas platyrhynchos: see Mallard
Aquila chrysaetos: see Golden eagle
Bobwhite: see Northern bobwhite
Branta canadensis: see Canada goose
Bullfrog—Rana catesbeiana: Baygon, carbayl, chlorpyrifos, DDT, demeton, Diazinon, dicrotophos, D.M. 7537, Gophicide, mexacarbate, mexacarbate (acylated), n-bam, phorate, phosphamidon, sodium monofluoroacetate, strychnine, temephos, TEPA, TEPP
California quail—Callipepla californica: aldicarb, Baygon, C-12 trichlorfon, carbayl, CHE 1843, chlordane, chlorpyrifos, DDT, demeton, dicrotophos, dieldrin, Dowco 214, endrin, EPN, fensulfothion, fenthion, heaxafurate, Landrin, lepto phos, methoxychlor, mexacarbate, Mobam, monocrotophos, Nemacur, oxydemetonmethyl, parathion, potassium azide, RE-11775, resmethrin, RU 11-679, SD 17250, sodium arsenite, sodium monofluoroacetate, strychnine, TDE, temephos, TFM, toxaphene, trichlorfon
Callipepla californica: see California quail
Canada goose—Branta canadensis: Baygon, carbaryl, chlorpyrifos, dicrotophos, dieldrin, fenthion, methidathion, mexitcarbomate, monocrotophos, naled, SD 17250, TEPA

Capra hircus: see Domestic goat

Carpodacus mexicanus: see House finch

Chukar—Alectoris chukar: azinphos-methyl, Baygon, carbaryl, Ceresan M, chlorpyrifos, 2,4-D, demeton, dicrotophos, dieldrin, D.M. 7537, EPN, fenthion, Gophacide, Landrin, mecrathion, methidathion, mexitcarbomate, Mobs, monocrotophos, oxydemetonmethyl, parathion, phorate, phosphamidon, Planavin, SD 16898, Silvisar-510, sodium monofluoroacetate, strychnine, temephos, TEPA, TEPP, tetrachlorvinphos, Yuma Chemical

Colinus virginianus: see Northern bobwhite

Columba livia: see Rock dove

Coturnix japonica: see Japanese quail

Dark-eyed junco—Junco hyemalis: Baygon

Dendrocycyga bicolor: see Fulvous whistling-duck

Domestic ferret (European polecat)—Mustela putorius: sodium monofluoroacetate

Domestic goat—Capra hircus: Baygon, chlorpyrifos, demeton, dieldrin, disulfoton, endrin, Landrin, mecrathion, monocrotophos, nabam, parathion, toxaphene

Domestic pigeon: see Rock dove

Eremophilia alpestris: see Horned lark

European polecat: see Domestic ferret

Ferret: see Domestic ferret

Fulvous whistling-duck—Dendrocycyga bicolor: aldrin, carbofuran, Ceresan L, dieldrin, parathion, toxaphene

Goat: see Domestic goat

Golden eagle—Aquila chrysaetos: Gophacide, monocrotophos, sodium monofluoroacetate, strychnine, thallium sulfate, zinc phosphate

Gray partridge—Perdix perdix: aldrin, Ceresan M, dieldrin, hexachlorobenzene, monocrotophos, parathion, toxaphene

Greater prairie chicken—Tympanuchus cupido: Ceresan M Grus canadensis: see Sandhill crane

Horned lark—Eremophilia alpestris: malathion, methiocarb, toxaphene, zinc phosphate

House finch—Carpodacus mexicanus: Baygon, demeton, dicrotophos, fenthion, mexitcarbomate, monocrotophos, TEPA

House sparrow—Passer domesticus: Baygon, chlorpyrifos, demeton, dicrotophos, dieldrin, D.M. 7537, EPN, fenthion, Landrin, mexitcarbomate, Mobs, monocrotophos, nucleopolyhedral virus, oxydemetonmethyl, Panogen, parathion, sodium monofluoroacetate, strychnine, temephos

Japanese quail—Coturnix japonica: Baygon, carbaryl, Ceresan L, Ceresan M, chlorpyrifos, 2,4-D, DDT, demeton, dicrotophos, dieldrin, EPN, fenthion, Landrin, mecrathion, monocrotophos, nabam, nicotine sulfate, oxydemetonmethyl, parathion, phosphamidon, pyrethrum, sodium monofluoroacetate, strychnine, temephos, TEPA, tetraethylead, toxaphene

Juno hyemalis: see Dark-eyed junco

Larus delawarensis: see Ring-billed gull

Mallard—Anas platyrhynchos: acephate, acrolein, Agro, Airkem A-33 Dry, Akton, alachlor, aldicarb, aldrin, allethrin, aminocarb, 6-aminoischinonamide, amitrole, anlizina, Armeen OD, atrazine, Atritol 100, azinphosmethyl, Bacillus thuringiensis (Berlin), Balan, BAY 93820, BAY 98663, Baygon, benzene hexachloride, bordeaux mixture, bromopropylate, butachlor, butylate, C-12 trichlorfon, C-2307, capsule wall material, captan, carbaryl, carbosulfan, carbofuran, carphophenthion, Ceresan L, Ceresan M, CHE 1843, chlordane, chlorendane, chlorfenivphos, chloroquinat chloride, chloroxuron, chlorpyrifos, CIPC, clonitral, coumaphos, crotoxyphos, crufomate, cyanazine, cycloheximide, Cyalone, 2,4-D, DDT, DDVP, DEP, demeton, Diazinon, dichlobenil, dichlor, dicloran, dicrotophos, dieldrin, diesel oil, di-fluro, dimethoate, dimethylformamide, disoseb, dioxyathion, diquat dibromide, dispersilur, disulfoton, diuron, D.M. 7537, DNOC, Dowco 214, Duomeen TE-9, edifenphos, endosulfan, endothiol, endrin, EPN, ethaphenthion, ethion, ethroprop, famphur, fenitrothion, fensulfothion, fenthion, fluometuron, fojpet, fonosol, GC-6506, Gophacide, grandure, heptachlor, hexaflurane, Imidan, IPC-400, isobenzan, Landrin, leptotheos, lindane, malathion, Mema RM, mexitcarbophos, methamidophos, methidathion, methiocarb, methomyl, methoprene, methoxychlor, methyl parathion, mevinphos, mexitcarbomate, mexitcarbomate (acylated), mirex, Mobs, monocrotophos, nabam, naled, Nemacur, Nemagon, nicotine sulfate, norbormide, Nosema locustae, nucleopolyhedral virus, Oil Herder, Oil Herder #2, oxydemetonmethyl, Panasol AN-2, Panogen, paraquat dichloride, parathion, PCNB, PCP, phorate, phosphamidon, phoxim, picloram, Planavin, PMA, polymchlorinated biphenyls, potassium azide, Process Oil 492, pyrethrum, RE-177S, ronnel, rotenone, RU 11-679, schradan, SD 7727, SD 16898, SD 17250, SD 30053, Shell Sol 70, silve, Silvisar-510, sodium arsenite, sodium monofluoroacetate, Starlicide, strychnine, sulfoxide, 2,4,5-T, TBA, TCDD, TDE, temephos, TEPA, TEPP, terbutryny, Tergitol 12-P-6, Terrazole, tetrachlorvinphos, tetradifon, tetraethylead, TFM, thallium sulfate, Thanate, thionazine, thiram, toxaphene, trichlorfon, trichloronat, trifluralin, Vendex, zinc phosphate, zineb, 492 Mosquito Larvicide Oil

Meleagris gallopavo: see Wild turkey

Mourning dove—Zenaida macroura: Baygon, fenthion, mexitcarbomate, sodium monofluoroacetate, strychnine

Mule deer—Odocoileus hemionus hemionus: aldrin, aminocarb, azinphos-methyl, Baygon, carbaryl, 2,4-D, demeton, dicrotophos, dieldrin, disulfoton, endrin, fenitrothion, Landrin, Mema RM, methomyl, mexitcarbomate, monocrotophos, naled, nicotine sulfate, nucleopolyhedral virus, parathion, phosphamidon, silve, Silvisar-510, sodium monofluoroacetate, strychnine, toxaphene
Mustela putorius: see Domestic ferret
Northern bobwhite—Colinus virginianus: aldrin, azinphos-methyl, C-12 trichlorfon, carbofuran, Ceresan L, chlorfenvinphos, clonitralid, cyanazine, DDT, dimethyldimethamidate, disparlure, ethamphenphlon, fenitrothion, fenthion, granule, leptophos, methyl parathion, monocrotophos, polychlorinated biphenyls, SD 16898, SD 17250, TCDD, TFM, toxaphene, trichlorfon
Northern pintail—Anas acuta: D.M. 7537
Odocoileus hemionus hemionus: see Mule deer
Oregon junco: see Dark-eyed junco
Passer domesticus: see House sparrow
Perdix perdix: see Gray partridge
Phasianus colchicus: see Ring-necked pheasant
Pheasant: see Ring-necked pheasant
Pigeon: see Rock dove
Rana catesbeiana: see Bullfrog
Rat: see Albino rat
Rattus norvegicus: see Albino rat
Red-winged blackbird—Agelaius phoeniceus: mestranol, methyl parathion, TEPA
Ring-billed gull—Larus delawarensis: clonitralid, dimethylformamide, TFM
Ringed turtle-dove—Streptopelia risoria: TCDD, trichlorfon
Ring-necked pheasant—Phasianus colchicus: aldicarb, aldrin, aminocarb, atrazine, azinphos-methyl, BAY 93820, Baygon, benzene hexachloride, bordeaux mixture, bufencarb, C-12 trichlorfon, C-2307, carbaryl, carbofuran, carbofenthalon, Ceresan L, Ceresan M, chloramben, chlordane, chlorfenvinphos, chlorpyrifos, coumaphos, cycloheximide, 2,4-D, DDT, DDVP, DEF, demeton, Diazinon, dichlobenil, dicloran, dicofol, dicotophos, dieldrin, dimethoate, dinoseb, dioxathion, disulfoton, D.M. 7537, DNOC, Dowco 214, Duomeen T-E-9, edifenphos, endosulfan, endothall, endrin, EPN, ethion, ethoprop, fenitrothion, fensulfothion, fenthion, fluorodifen, GC-6506, Gophacide, Imidan, Landrin, leptophos,
malathion, methidathion, methiocarb, methomyl, methyl parathion, mevinphos, mexacarbate, mirex, Mobam, monocrotophos, nabam, naled, Nemagon, nicotine sulfate, Nosema locustae, nucleopolyhedral virus, oxydemetonmethyl, Panogen, parathion, PCNB, PCP, phorate, phosphamidon, phoxim, picrotox, PMA, potassium azide, rotenone, rotenone, schradan, SD 16898, SD 17250, sodium arsenite, sodium monofluoroacetate, strychnine, 2,4,5-T, TBA, TDE, temephos, TEPA, TEPP, terbutryn, tetrachlorvinphos, thallium sulfate, Thanite, thionazin, thiram, toxaphene, trichlorfon, trifluralin, Vendex, zinc phosphide, zineb
Rock dove (domestic pigeon)—Columba livia: Baygon, carbaryl, Ceresan M, chlorpyrifos, 2,4-D, DDT, demeton, dicrotophos, dieldrin, endrin, EPN, fenthion, Landrin, mexacarbate, Mobam, monocrotophos, nabam, nicotine sulfate, oxydemetonmethyl, parathion, phosphamidon, sodium monofluoroacetate, strychnine, temephos, TEPA, trichlorfon
Sandhill crane—Grus canadensis: Baygon, chlorpyrifos, DDT, mexacarbate, toxaphene
Sharp-tailed grouse—Tympanuchus phasianellus: Baygon, carbaryl, carbofenthalon, demeton, dicrotophos, endrin, fenitrothion, fensulfothion, methoxychlor, mevinphos, mexacarbate, Mobam, naled, parathion, phosphamidon, phoxim, toxaphene
Streptopelia risoria: see Ringed turtle-dove
Turkey: see Wild turkey
Tympanuchus cupido: see Greater prairie chicken
Tympanuchus phasianellus: see Sharp-tailed grouse
White-crowned sparrow—Zonotrichia leucophrys: D.M. 7537
White-winged dove—Zenaida asiatica: phosphamidon
Wild turkey—Meleagris gallopavo: monocrotophos, sodium monofluoroacetate
Zenaida asiatica: see White-winged dove
Zenaida macroura: see Mourning dove
Zonotrichia leucophrys: see White-crowned sparrow
A list of current Resource Publications follows.

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.