Direct versus Terrestrial Liming for Mitigating Acidity in Streams

Madison A. Roberts and Daniel M. Downey
James Madison University Department of Chemistry and Biochemistry
Acid Deposition

• Increased acid content in precipitation
• Caused by anthropogenic emissions of SO_2 and NO_2 gases
Chemistry of Acid Deposition

SO₂ + ·OH → ·SHO₃ (alt. oxidants O₃ or NO₂)

·SHO₃ + O₂ → SO₃ + ·OOH

SO₃ + H₂O → H₂SO₄

SO₂ + H₂O → H₂SO₃ (aq)

H₂SO₃ (aq) + H₂O₂ (aq) → H₂SO₄ + H₂O

N₂ + O₂ + heat → 2NO

NO + O₃ → NO₂ + O₂

NO₂ + ·OH → HNO₃
Effects of Acid Rain on Stream Chemistry

- Weathering of bedrock is the main contribution to ionic composition of stream water
- Charge balance:
 \[[H^+] + 2[Ca^{2+}] + 2[Mg^{2+}] + [K^+] + [Na^+] = [OH^-] + [Cl^-] + [NO_3^-] + 2[SO_4^{2-}] + [HCO_3^-] \]
- Acid neutralizing capacity (ANC)
 - a.k.a. alkalinity or $[HCO_3^-]$
- 800 USFS stream samples: pH versus observed alkalinity
Little Stony Creek: Annual Average ANC and SO_4^{2-} Concentration Values

Pyszka, 2017
Acidification and Recovery of Surface Waters

Lawrence et al., 2016
Mitigation Strategies: Liming

• Stream liming
 • Direct introduction of lime material to stream water
 • Targets aquatic system
 • Application method: dump truck, front-end loader or helicopter

• Terrestrial (watershed) liming
 • Application of lime material over a specific area of land
 • Indirect introduction to stream water
 • Targets aquatic and terrestrial systems
 • Application method: helicopter or fixed-wing aircraft

https://www.awapa.org/marketingpromotion
Stream Liming

• Benefits
 • Immediate effects on water chemistry
 • Point application
 • Tailored to stream flow and chemistry
 • Predictable
 • Low relative cost
 • Single treatment within days

• Limitations
 • Does not mitigate the effects of acid rain on soils and terrestrial vegetation
 • Limited treatment duration
 • Treatment occurs downstream of liming site
 • Requires road access
 • Higher cost for helicopter
Dosage Calculations—Little Stony Creek

<table>
<thead>
<tr>
<th>Model</th>
<th>Limestone Dose (tonnes/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1996</td>
</tr>
<tr>
<td>Deposition</td>
<td>13.50</td>
</tr>
<tr>
<td>“Lost” ANC</td>
<td>6.95</td>
</tr>
<tr>
<td>Sulfate equivalence</td>
<td>20.1</td>
</tr>
<tr>
<td>Target ANC/pH</td>
<td>4.05</td>
</tr>
</tbody>
</table>

• “Deposition” Model – to offset input of H^+ and NH_4^+
• “Lost” ANC model – based on late 1980s data
• “Sulfate” Model – the amount equal to sulfate input minus the natural amount present in stream water
• “Target” Model – to achieve pH 6.5 and 25 µeq/L ANC

Pyszka, 2017
Watershed Liming

• Benefits
 • Could supply Ca$^{2+}$ to soils that are base cation-depleted
 • Long-term treatment
 • Can treat entire stream reach
 • Whole ecosystem treatment

• Limitations
 • Relative high cost
 • Does not replace all depleted base cations
 • Difficult to predict mass of limestone needed for treatment
 • Takes time to manifest in stream water chemistry
 • Could be detrimental to plants/animals that prefer acidic habitats (Ex: Swamp Pink)
 • Significant logistical considerations

https://foldedpetals.wordpress.com/2015/02/06/get-to-know-an-endangered-plant-swamp-pink/
Comparison of Direct Stream Liming and Watershed Liming for St. Mary’s Wilderness for a 50-year Treatment Period

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stream Liming</th>
<th>Watershed Liming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosage</td>
<td>25.9 tonnes/yr</td>
<td>6.89 tonnes/ha</td>
</tr>
<tr>
<td>Treatment</td>
<td>182 tonnes</td>
<td>27,900 tonnes</td>
</tr>
<tr>
<td>Total Limestone</td>
<td>1,274 tonnes</td>
<td>27,900 tonnes</td>
</tr>
<tr>
<td>Treatment Time</td>
<td>1 day (7 days)</td>
<td>155 days</td>
</tr>
<tr>
<td>Duration per Treatment</td>
<td>7 years</td>
<td>50 years</td>
</tr>
<tr>
<td>Miles treated</td>
<td>10 mi</td>
<td>15 mi</td>
</tr>
<tr>
<td>Soils</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Aquatic only</td>
<td>Yes</td>
</tr>
<tr>
<td>Flora/Fauna Risk</td>
<td>No</td>
<td>Potential</td>
</tr>
<tr>
<td>Cost/Labor</td>
<td>High</td>
<td>Very high</td>
</tr>
<tr>
<td>Predictable Outcome</td>
<td>Yes</td>
<td>Unproven</td>
</tr>
</tbody>
</table>

Driscoll et. al., 1996
Acknowledgements

• Valerie Nelson and Dawson Bowles
• Dawn Kirk, Fisheries Biologist, USFS
• United States Forest Service – George Washington and Jefferson National Forests
• Virginia Department of Game and Inland Fisheries
• James Madison University Chemistry Department
• NSF-REU Grant No. CHE-1757874
References

